
i
i

“phd-thesis” — 2006/7/4 — 10:58 — page -1 — #1 i
i

i
i

i
i

Ph.D. Dissertation in Computer Science

WildDocs –
Investigating Construction of
Metaphors in Office Work

Claus Atzenbeck
Aalborg University, DenmarkAt

ze
nb

ec
k

 •
 W

ild
Do

cs

picture source: <http://commons.wikimedia.org/wiki/Image:KunaFlagMola.jpg>picture source: <http://commons.wikimedia.org/wiki/Image:Rigveda_MS2097.jpg>

PhD Thesis Titlepage – ISO B5 – Spine 12 mm – April 2006

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 0 — #2 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 1 — #3 i
i

i
i

i
i

ISBN: 87-7606-014-4
c© 2006 Claus Atzenbeck

Document version: July 4, 2006 – 10:58
All trademarks are property of their respective owners.

Cover: Rigveda MS in Sanskrit on paper, India, early 19th c., 4 vols., 795 ff., 10 cm×20 cm
(magnified), single column (7 cm× 17 cm), 10 lines in Devanagari script with deletions in
yellow, Vedic accents, corrections, etc., in red. Binding: India, 19th c., blind-stamped brown
leather, gilt spine, sewn on 5 cords, marbled endleaves. Picture taken from http://commons.
wikimedia.org/wiki/Image:Rigveda_MS2097.jpg

http://commons.wikimedia.org/wiki/Image:Rigveda_MS2097.jpg
http://commons.wikimedia.org/wiki/Image:Rigveda_MS2097.jpg

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 2 — #4 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 3 — #5 i
i

i
i

i
i

Ph. D. Dissertation in Computer Science

WildDocs – Investigating Construction of
Metaphors in Office Work

Claus Atzenbeck
http://www.atzenbeck.de

Aalborg University, Denmark

July 4, 2006

Advisor
Peter J. Nürnberg, Ph. D.

http://www.atzenbeck.de
http://www.atzenbeck.de
http://cs.aue.auc.dk/~pnuern/

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 4 — #6 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 5 — #7 i
i

i
i

i
i

To my Family.

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 6 — #8 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 7 — #9 i
i

i
i

i
i

Contents

Abstract (English) 17

Resumé (Dansk) 19

I. Theory 21

1. Introduction 23
1.1. Physical and Digital Documents . 23
1.2. Structures . 24

1.2.1. General . 24
1.2.2. Levels and Multi-Layers . 25
1.2.3. Importance of (Structure) Details 26

1.3. Use Case Scenarios . 27
1.4. Summary and Agenda . 28

2. Analysis 31
2.1. Overview . 31
2.2. Structures Built with Real Documents . 31

2.2.1. Related Research . 31
2.2.2. Our Observations . 34
2.2.3. Structure Descriptions . 39
2.2.4. Constraints and Emerging Metainformation 48

2.3. Applications Based on Paper Metaphors . 49
2.3.1. Paper Simulation . 49
2.3.2. Spatial Hypertext Applications with Respect to the Real World 55

3. Hypotheses 73
3.1. Remarks . 73
3.2. Hypotheses Phrasing . 74

3.2.1. Variable Document Sizes (v1) . 74
3.2.2. Extended Zooming (v2) . 74
3.2.3. Rotation (v3) . 75

II. Implementation and Evaluation 77

7

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 8 — #10 i
i

i
i

i
i

Contents

4. Application Design and Implementation 79
4.1. General . 79

4.1.1. Overview . 79
4.1.2. Main Class . 81
4.1.3. Layer . 103
4.1.4. Desk Imitation . 104

4.2. Documents . 104
4.2.1. General . 104
4.2.2. Low Level Documents . 105
4.2.3. Bindings . 115

4.3. Machines . 136
4.3.1. Rotation . 136
4.3.2. Node Dragging . 140
4.3.3. Calculating Binding Clip Positions 143
4.3.4. Index Pushing . 144
4.3.5. Cluster Recognition . 147
4.3.6. Unit Conversion . 148
4.3.7. Node Factory . 149
4.3.8. Turning Documents (Obsolete) . 149

4.4. Interaction . 149
4.4.1. Bounds Handle . 149
4.4.2. Change Active Node on Mouse Over 150
4.4.3. Input Event Handlers . 153

4.5. Miscellaneous . 166
4.5.1. Filters . 166
4.5.2. Index Comparison . 167
4.5.3. Storage . 169
4.5.4. File Access . 172
4.5.5. Boxes and Rotation Point (Obsolete) 172

5. Experimental Design and Evaluation 175
5.1. Goals . 175
5.2. Method . 175

5.2.1. Test Laboratory . 175
5.2.2. Test Applications . 177
5.2.3. Documents and Questions Sets . 183
5.2.4. Design . 188
5.2.5. Procedure . 188
5.2.6. Participants . 190

5.3. Statistical Results . 191
5.3.1. Remarks on Skipped or Taken Out Questions 191
5.3.2. Organizing Documents in WildDocs 193
5.3.3. Finding Documents in WildDocs . 196
5.3.4. Use of WildDocs Specific Features 200
5.3.5. Relations . 205
5.3.6. Participants’ Ratings . 208

5.4. Summary and Conclusion on Statistical Results 208

8

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 9 — #11 i
i

i
i

i
i

Contents

6. Summary, Future Work, and Conclusion 211
6.1. Summary . 211

6.1.1. Statistical Evaluation . 211
6.1.2. Real World Observations . 212
6.1.3. Application Analysis . 213

6.2. Future Work . 214
6.2.1. Open Questions . 214
6.2.2. Improving WildDocs . 214
6.2.3. Extending WildDocs . 215
6.2.4. Input Device . 217
6.2.5. Integration in Structural Computing Environments 219
6.2.6. Summary . 220

6.3. Conclusion . 220

III. Appendix 223

A. Pre-Work and Introduction 225
A.1. Participant Agreement . 225
A.2. Pre-Test Questionnaire . 227
A.3. Introduction Movie Manuscript . 227
A.4. Foreign Language Sample Documents . 230

B. Post-Work and Analysis 235
B.1. Post-Test Questionnaire . 235
B.2. Log Files . 235

C. Acknowledgements 237

Bibliography 239

Index 251

9

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 10 — #12 i
i

i
i

i
i

Contents

10

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 11 — #13 i
i

i
i

i
i

List of Figures

2.1. Maps of two offices by Malone (1983) . 32
2.2. Unstructured heaps of student hand-ins on the floor 35
2.3. Britta’s “center of work” . 36
2.4. Britta’s workspace . 37
2.5. Selected ISO and ANSI paper sizes . 38
2.6. Overview structures . 40
2.7. Grouping structures . 41
2.8. Tray with paper stack pulled-out . 42
2.9. Division, annotation, and other structure types 42
2.10. Colored binders . 43
2.11. Structure pushed to the next deeper level . 47
2.12. Screenshot of the Open The Book application 49
2.13. The Escritoire, a pile, and browsing a pile . 51
2.14. Video-Based Document Tracking; document query and document dragging . . . 52
2.15. Rotation and peeling back . 52
2.16. Leaving through windows dragging an icon (approximated mouse path indicated) 53
2.17. Pile metaphor for user created pile, pile with script attached, gesturing a pile, and

result of gesturing by Mander et al. (1992) . 54
2.18. Sequence of resizing and repositioning of windows with Exposé on Mac OS X . . 54
2.19. Comparison of real world and spatial hypertext application 58
2.20. Rotation in OmniGraffle . 59
2.21. Grid in VKB, and grid and grid inspector window in OmniGraffle 60
2.22. As stack aligned nodes in VKB, and alignment tools in VKB and OmniGraffle . . 60
2.23. Grid options in Tinderbox . 61
2.24. Schloss Schönbrunn, Vienna, Austria, and Grüne Zitadelle by Hundertwasser,

Magdeburg, Germany . 62
2.25. Node representations in Tinderbox . 63
2.26. Shadow attributes in OmniGraffle . 63
2.27. VKB’s context menu for nodes . 64
2.28. Node with heading in map view and its content in Tinderbox 65
2.29. Nodes with different attributes and note inspector in OmniGraffle 65
2.30. Representation of a collection object as hole . 67
2.31. Zoom functions and floating miniature workspace window in VKB 69
2.32. Sequence of zooming into an object in Tinderbox 70

4.1. Overview of Piccolo core classes and class for styled text support 81
4.2. WildDocs packages overview . 81
4.3. Screenshots of viewport before and after quickzoom’s complete zoom out, show-

ing quickzoom’s fading out magenta colored destination rectangle 97

11

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 12 — #14 i
i

i
i

i
i

List of Figures

4.4. Low level documents class diagram (package documents.lowLevel) 105
4.5. Adornments class diagram (package documents.adornments) 111
4.6. Shadow and border line for low level documents; pile of ten documents and one

single document . 112
4.7. Bindings class diagram (package documents.bindings) 116
4.8. Binder with depicted source and destination binding dimension 120
4.9. Binding associations in early and late development, and depicted real world equiv-

alent . 121
4.10. Example of a page with a mix of binding and low level documents 126
4.11. Binding mechanisms class diagram (package documents.bindings.mechanisms) . 129
4.12. Calculating incidental rotation angle by position 139
4.13. Index pusher behavior . 144
4.14. Index pusher limits – indices chain . 145
4.15. Index pusher limits – scope and rotation . 147
4.16. Changing active node on mouse over . 150
4.17. WildDocs menus on Mac OS X . 154
4.18. Bounds handles with marked mouse over areas for resizing (outdated develop-

ment version) . 160
4.19. Filters class diagram (package filters) . 166
4.20. Storage classes diagram (package storages) . 169

5.1. Test laboratory setup . 176
5.2. Compilation of video material captured during a session 177
5.3. Keyboard labels used for different WildDocs versions 179
5.4. Picture of WildDocs v4 keyboard with marked shortcut keys 180
5.5. Picture of WildDocs v3 keyboard with marked shortcut keys 181
5.6. Picture of WildDocs v2 keyboard with marked shortcut keys 181
5.7. Picture of WildDocs v1 keyboard with marked shortcut keys 182
5.8. Codes on top of documents: variable size (v1) and fixed size (v4) 186
5.9. Information about participants . 191
5.10. Time spent for organization task . 193
5.11. Occupied area after organization phase . 195
5.12. Screenshots of v1 and v3 , each at 100 % zoom level 196
5.13. Time spent for correctly finding documents . 197
5.14. Failure rates due to structure problems . 200
5.15. Rate of failed questions due to structure problems 201
5.16. Menu zoom activations during organization and finding phase in v1 , v3 , and v4 . 202
5.17. Zoom function usage during organization and finding phase in v2 203
5.18. Bounds handle usage during organization and finding phase in v1 205
5.19. Relation of bounds handle usage to organizing and finding time in v1 206
5.20. Relation of occupied area to zoom menu activations during organization and find-

ing phase for v1 , v3 , and v4 . 207

6.1. OmniGraffle object and style summary inspector window with the object’s visual
attributes listed . 213

6.2. Inertia/friction simulation in DynaWall demonstrated by “pushing” a document,
which moves to the other side of the display . 215

12

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 13 — #15 i
i

i
i

i
i

List of Figures

6.3. Two windows in Squeak, rotated Wild Windows window on Mac OS X, and the
Perturbed Desktop on Mac OS X . 216

6.4. Sketch of an input device for WildDocs . 218
6.5. Screenshots of Myst and Myst III: Exile . 221

A.1. Participant agreement form . 226
A.2. Greek sample document . 231
A.3. Arabic sample document . 232
A.4. Hebrew sample document . 233
A.5. Japanese sample document . 234

13

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 14 — #16 i
i

i
i

i
i

List of Figures

14

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 15 — #17 i
i

i
i

i
i

List of Tables

2.1. Tendencies of overview, division, or annotation of different paper bindings 40
2.2. Binding characteristics . 44
2.3. Structure types and potential related structure types 46

3.1. Summary of our assumptions . 73

4.1. WildDocs packages and classes . 80
4.2. Preference switches and default settings . 83
4.3. Individual preference switches for WildDocs versions 85
4.4. Current predefined rotation factors for random rotation, based on experiments to

reach realistic behavior . 138
4.5. Example of index paths . 169

5.1. WildDocs application features . 178
5.2. Visual attributes of documents . 184
5.3. Questions asked during finding parts of test sessions 187
5.4. Summary of statistical tests compared to WildDocs v4 208

15

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 16 — #18 i
i

i
i

i
i

List of Tables

16

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 17 — #19 i
i

i
i

i
i

Abstract (English)

Knowledge is an important resource in an information society. People use it to develop new
products, find new medical treatment to fight diseases, adapt or change international relation-
ships, or gain new knowledge. The amount of knowledge constantly grows and therefore
produces the need for tools that help people to structure, store, or retrieve information.

One example of a tool is paper, an old medium that still is used to store, exchange, or
retrieve information. People have been refining this carrier to support knowledge worker in
managing their work load. Paper needs to be organized. Therefore, libraries were invented
even in ancient times that allow, for example, civil servants to reach the information they need
efficiently. This is still true today.

In the late 1970s, another tool that aims to solve the problems of structuring, storing, and
retrieving of information was introduced: personal computers. They have become normal
devices in today’s offices, used by millions of office workers.

Computers can run databases that store large amounts of data or offer information retrieval
systems that support the user in finding information. Recently, semantic technologies became
popular in computer science. They allow applications (so-called “agents”) to use attached
semantics for improving retrieval related functionality.

Another branch of research and applications focus on structure domains. There is a variety
of structures, each built with well-defined tasks in mind. For example, taxonomic structures
are appropriate for classification, such as those used in biology. The classification must exist
before biologists can start classifying plants or animals.

These techniques may not be appropriate when the final structure is not known. For ex-
ample, associations come up during brainstorming sessions that do not follow a predefined
structure. One way to represent the associations is to use small pieces of paper, write or draw
the associated term or a picture on it, and place it on a workspace. During the session, partic-
ipants can move these nodes around to express relationships among the information snippets.
The structure changes constantly over time. Most of the structure is implicit, such as spatial
arrangement based on completely freely movable snippets.

Brainstorming sessions usually take only a short period of time. Other paper-based struc-
tures, for example, structures of printed articles or books on a desk, evolve over weeks or
months. Devices, such as binders, folders, or shelves, help to put them in place. In many
cases, offices have to be restructured due to lack of space or growing pieces of information.
That leads to emerging spatial arrangements that exist beside predefined ones (e. g., computer
science books are located at the top part of the shelve). Also here, spatial structures that
were created or modified over time carry implicit metainformation to a large extent. This
metainformation is best interpreted by the person who created it.

Most of this implicit information happened to be created without any explicit intention. For
example, there may be a sloppily arranged pile of articles at the right side of the desk, because
there was no place on the left side. Furthermore, it is sloppy, because the office worker did
not have time to align it properly. The person knows that this is a preliminary pile, because
of its position and its shape.

17

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 18 — #20 i
i

i
i

i
i

Abstract (English)

There are computer applications that support the informal creation of spatial structure.
Examples include spatial hypertext application. They are based on a cards-on-table metaphor.
However, physical cards on a table look and behave differently to shapes in spatial hypertext
applications. As many metaphor-based applications, spatial hypertext applications’ metaphor
implementations are highly abstract, compared to the original real world referents. Many
influences that makes spatial structure emerge over time, as described above, are ignored.
This causes the reduction of implicit metainformation.

For example, physical forces (e. g., gravity or friction) or incidental rotation during moving
an object are ignored. The size of the space is practicably unlimited in applications, whereas
the real world has limited space on a desk. A closer look shows that physical paper structures
are of higher complexity than equivalent metaphor-based implementations.

In this thesis, we describe different structures created with paper and propose a classifica-
tion scheme. Then, we compare these structures to selected computer applications. We argue
that the discovered aspects may improve finding and organizing of information. However,
most are not implemented in applications due to a high abstraction level.

For this thesis we focus on rapid zooming, rotation, and fixed size documents. We claim
that those interactions or attributes will decrease the time for finding information significantly,
because they support natural interaction and/or emerging implicit metainformation. In order
to test this, we built a prototype, WildDocs, a 2D-based spatial application that supports the
requested features. We found our expectations about more effective information retrieval
partly supported.

This thesis includes a detailed discussion of WildDocs. One basic concept of this appli-
cation is that all documents are considered structured and structuring at the same time. The
implementation is based on the classification for paper structures we defined and provides a
high degree of freedom to system developers to add new document types.

Furthermore, we point to related areas that are of future interest. Those include extending
WildDocs to support paper-like movement (e. g., through simulation of gravity or friction), or
act on physical/digital mixed environments or as window manager. We also describe an input
device that is designed to match WildDocs’s navigation and zooming features. Finally, we
discuss WildDocs and its integration in structural computing environments.

18

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 19 — #21 i
i

i
i

i
i

Resumé (Dansk)

Viden er en vigtig ressource i informationssamfundet. Den anvendes til at udvikle nye pro-
dukter, nye behandlinger for sygdomme, tilpasse eller ændre internationale relationer, eller
finde ny viden. Mængden af viden vokser konstant, hvilket skaber et behov for værktøjer der
hjælper mennesker med at strukturere, lagre, og genfinde information.

Et eksempel på et værktøj er papir, der stadig anvendes til at gemme, udveksle, og hen-
te information. Man har forædlet værktøjet til at understøtte vidensarbejderen i at håndtere
sin arbejdsbyrde. Papir skal organiseres. Derfor opfandt man biblioteker der, selv i gammel
tid, tillod, for eksempel embedsmænd, at få fat i den information de havde behov for, på en
effektiv måde. Dette gælder stadig i dag.

Sidst i 1970’erne introduceredes et nyt værktøj, som også er målrettet til at løse proble-
mer med strukturering, lagring, og genfinding: den personlige computer. I dag er de blevet
almindelige redskaber, som anvendes på millioner af kontorer.

Computere kan køre databaser der gemmer store mængder af data eller tilbyder informa-
tion retrieval systemer der understøtter brugeren i at genfinde information. I nyere tid er se-
mantiske teknologier blevet populære indenfor datalogien. De tillader applikationer (såkaldte
»agenter«) at udnytte semantisk information til at forbedre genfindingsfunktionalitet.

En anden gren af forskning og applikationer fokuserer på strukturdomæner. Der er en
mangfoldighed af strukturer, hver bygget med henblik på en specifik opgave. Taksonomi-
ske strukturer, for eksempel, er egnet til klassificering og anvendt til dette i biologi. Man er
nødt til at have en klassifikation før man kan begynde at klassificere planter og dyr.

Disse teknikker er ikke nødvendigvis hensigtsmæssige når den endelige struktur ikke er
kendt. Eksempelvis associationer der kommer frem i en brainstorm, der ikke følger nogen
prædefineret struktur. En måde at repræsentere disse associationer på, er at benytte små styk-
ker papir, skrive eller tegne det associerede term eller et billede på dem, og placere dem på
en arbejdsflade. I løbet af sessionen kan deltagerne så flytte rundt på noderne, for at udtrykke
sammenhænge imellem informationsbidderne. Strukturen ændrer sig konstant over tid. Det
meste af strukturen er implicit, så som den spatiale arrangering af de frit flytbare informa-
tionsbidder.

Brainstorming sessions finder som oftest sted i et begrænset tidsrum. Andre papirbaserede
strukturer, for eksempel strukturer af printede artikler eller bøger på et skrivebord, udvikler
sig over uger eller måneder. Anordninger, så som bind, mapper, og hylder hjælper med at
holde dem på plads. I mange tilfælde bliver kontorer omorganiseret, eksempelvis på grund
af manglende plads eller voksende informationsenheder. Dette fører til udviklingen af nye
spatiale arrangementer, der eksisterer side om side med de prædefinerede (eksempelvis data-
logibøger står på den øverste sektion af reolen). Også her indeholder de spatiale strukturer, der
er blevet skabt eller modificeret over tid, i vid udstrækning implicit metainformation. Denne
metainformation tolkes bedst af den person der har skabt den.

Det meste af denne implicitte metainformation er blevet skabt uden at det var skaberens
eksplicitte hensigt. For eksempel, kan der stå en sjusket arrangeret stak af artikler på højre
side af skrivebordet, fordi der ikke var plads på den venstre. Ydermere er den sjusket fordi

19

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 20 — #22 i
i

i
i

i
i

Resumé (Dansk)

kontorarbejderen ikke havde tid til at arrangere den ordentligt. Personen ved at det er en
midlertidig stak, på grund af dens position og form.

Der findes computer applikationer der understøtter den uformelle skabelse af implicitte
strukturer. Eksempler på dette inkluderer spatiale hypertekst applikationer. De er baseret på
en kort-på-bordet metafor. Fysiske kort på et bord opfører sig imidlertid anderledes og ser
anderledes ud end former i spatiale hypertekst applikationer. Som mange metaforbaserede
applikationer er spatial hypertekst applikationers metafor implementeret på et meget abstrakt
niveau, sammenlignet med de originale »virkelige« koncepter. Mange af de indflydelser der
får spatiale strukturer til at fremkomme over tid, som beskrevet ovenfor, bliver ignoreret.
Dette medfører en reduceret mængde af implicit metainformation.

For eksempel bliver de fysiske kræfter (eksempelvis friktion og tyngdekraft) og tilfældig
rotation imens man flytter et objekt ignoreret. De fysiske rammer er af, praktisk talt, uendelig
størrelse, hvorimod borde i den virkelige verden har begrænset plads. Nærmere undersøgelse
viser at de fysiske papirstrukturer er af højere kompleksitet end deres ækvivalente metafor-
baserede implementationer. I denne afhandling beskriver vi forskellige strukturer der er skabt
med papir og foreslår et klassificeringsskema. Herefter sammenligner vi disse strukturer med
udvalgte computer applikationer. Vi hævder at de fundene aspekter kan forbedre genfinding
og organisering af information. De fleste er imidlertid ikke implementeret i applikationer,
grundet et højt niveau af abstraktion.

I denne afhandling fokuserer vi på hurtig zoomning, rotation, og dokumenter af fast stør-
relse. Vi påstår at disse interaktioner og attributter vil reducere tiden det tager at genfinde
information betydeligt, fordi de understøtter en naturlig interaktion og udviklingen af implicit
metainformation. For at teste dette, har vi konstrueret en prototype, WildDocs, en 2D-baseret
spatial applikation der har de fornødne egenskaber. Vi fandt at vores forventninger om en
mere effektiv genfinding af information var delvist underbygget.

Denne afhandling slutter med en detaljeret diskussion af WildDocs. Et grundlæggende kon-
cept i denne applikation er at alle dokumenter bliver betragtet som både strukturerede og
strukturerende på samme tid. Implementationen er baseret på den klassifikation af papirstruk-
turer vi definerede og giver en høj grad af frihed for systemudviklere til at udvikle nye typer
af dokumenter.

Ydermere peger vi på relaterede områder der kan være af interesse i fremtiden. Blandt disse
er at udvide WildDocs til at understøtte papiragtig bevægelse (eksempelvis igennem simule-
ring af tyngdekraft og friktion), og at agere i fysisk/digitalt blandede miljø eller som window
manager. Vi beskriver også en inputanordning der er designet specifikt til at matche Wild-
Docs’ navigation og zoomning faciliteter. Endelig diskuterer vi WildDocs og dens integration
med structural computing miljø.

20

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 21 — #23 i
i

i
i

i
i

Part I.

Theory

21

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 22 — #24 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 23 — #25 i
i

i
i

i
i

Chapter 1.

Introduction
„Es ist die Arbeit der Interpretation
im Kopf, die aus den Zeichen, die
Computer anzeigen, eine Infor-
mation macht. Wir kriegen auch
meistens nicht die Zeichen, die
wichtig sind für eine Entschei-
dung.“

(Joseph Weizenbaum, May 2005)

1.1. Physical and Digital Documents

Paper is a very important medium in our culture. For centuries it has been used to carry
information. Equally important are structures that were built with paper. For example, single
sheets were bound as books. Those were stored in libraries, placed in areas assigned to
specific topics, or ordered by authors. Structuring supports fast retrieval and easy traversal.
Structured information are easier to understand and therefore support knowledge exchange
more efficiently.

Today’s offices have a variety of tools that support structuring paper. Perforators let office
workers punch holes into sheets to be put into binders afterwards. Trays hold loose sheets in
place. Staples are used to clip individual sheets. Copy shops offer binding of collections of
sheets as books. Shelves hold various objects, such as binders, books, or even piles of paper.
Such facilities have been developed over time and are mostly well-known through long term
use.

When computers were brought to offices, they were an additional tool to be used beside
paper. They are capable of storing, transporting, and displaying information independently
of paper. Computers have even been seen as a potential replacement for paper. A discussion
about the “paperless office” began. However, the opposite happened. More paper has been
used.

It seems to be a paradox that new technology that offered to reduce the amount of paper in
an until then unexpected manner increased the amount of paper used (Frohlich & Perry, 1994).
Even more, Whittaker & Hirschberg (2001, 157) have shown that “[o]nly 49 % of people’s
original archive was unique: 15 % was unread, and 36 % consisted of copies of publicly
available documents.” Easy printing of digital documents may be one reason for extensive
paper use. Another and more important reason may be advantages of physical paper:

“The use of paper in the modem world persists because of its physical properties,
not only despite them. Paper is convenient, requiring no batteries. It is light,
readable, and durable. It has a tangible, persistent existence that is valued in

23

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 24 — #26 i
i

i
i

i
i

Chapter 1. Introduction

legal and business transactions.” (Johnson et al., 1993, 512)

The gap between digital and physical documents has led to two research directions: “aug-
menting real paper with computational properties, and simulating the properties of paper in an
electronic document” (Ashdown, 2004, 19). For example, apparatuses have been developed
that project digital documents onto a real desk (e. g., Ashdown, 2004). On the other side,
new software and hardware technology have raised potentials of simulations to photorealistic
quality, for example, realistic animation of turning a virtual book’s pages (e. g., Chu et al.,
2003).

1.2. Structures

1.2.1. General

Merging physical and digital paper is not the only attempt to close the gap between both media
types. Other research directions explicitly state the additional features of digital media. One
example is hypertext. The term was originally introduced as “a body of written or pictorial
material interconnected in such a complex way that it could not conveniently be presented or
represented on paper” (Nelson, 1965, 96). This definition underlines the difference between
paper and computer, especially the ability of machines to do something that is not possible on
physical paper.

Interestingly, some components in hypertext systems were named after paper related items.
For instance, a “node” is called “card” in NoteCards and HyperCard, “document” in AUG-
MENT and Intermedia, or “article” in Hyperties, as summarized in Halasz & Schwartz (1994,
32).1 Other systems use the term “pages” for nodes (e. g., the WWW). It is also interesting
to note that the system to which the hypertext pioneers refer to was based on microfilm, a
physical medium: Memex has been described by Vannevar Bush (Bush, 1945) in the middle
of last century, but never implemented. The name is an abbreviation for “Memory Extender”.
This machine was designed to “build a trail of [. . .] items” which can be followed again at
any time later.

Based on Bush’s idea, hypertext was originally based on a node–link concept. Nodes are
connected via links. One of the most prominent models is the Dexter Hypertext Reference
Model (Halasz & Schwartz, 1994; Grønbæk & Trigg, 1994). It was designed to provide a
generic model for system developer as well as to unify the diverse terminology.

In the late 1990s, the hypertext research community adapted different other structure types
and introduced them under the umbrella “hypertext”. Those included spatial hypertext, which
was originally introduced as “graphical knowledge structure” (Marshall et al., 1991, 262).
This model refers to the real world by implementing a card-on-table metaphor. Objects can
be related by spatial positioning or visual cues, similar to what people can do with small
cards on a table. Another structure type that was introduced to the community under the term
“hypertext” was taxonomic hypertext (Parunak, 1991).

Many other structure or application domains have been discusses within or related to hy-
pertext. For example, argumentation structures (Conklin & Begeman, 1987, 1988), hypertext

1Examples for the use of those terms can be found in Halasz et al. (1987) for NoteCards, Smith & Bernhardt (1988)
for HyperCard, Engelbart (1984) for AUGMENT, Garrett et al. (1986) for Intermedia, and Shneiderman (1987)
for Hyperties.

24

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 25 — #27 i
i

i
i

i
i

1.2. Structures

fiction and narrative structures (Bernstein, 1998; Weal et al., 2001b), ontology support (Weal
et al., 2001a), musical structures (De Roure et al., 2002), or multi-structure interfaces (Wang
& Fernández, 2002) and structure interoperability (Atzenbeck & Nürnberg, 2004). A recent
branch discusses the linking of digital and physical objects, known as physical hypermedia
(Grønbæk et al., 2003). Currently, a new structure domain brought to the hypertext commu-
nity deals with social structures.2

Even though we have mentioned many different structure types that were discussed with
respect to the medium computer, they do not have to be necessarily represented digitally.
For example, Mark Lombardi (1951–2000) was an artist who created aesthetic drawings that
represent relationships among people and organizations. He calls them narrative structures.3

Lombardi used a large number index cards with handwritten notes as database for his draw-
ings. They relate to current incidents at that time and include people of public interest. For
example, one drawing is titled “Banca Nazionale del Lavoro, Reagan, Bush, Thatcher, and
the Arming of Iraq, 1979–90” (Hobbs, 2003, 87–91).4 Lombardi extracted implicit informa-
tion that he found in public sources (i. e., newspapers), noted them on index cards, and finally
drew their interrelations.

1.2.2. Levels and Multi-Layers

Our reflection of this world is very data centric. This can be seen in the way computer appli-
cation are programmed and used. However, by taking a closer look it turns out that structure
is an equivalent view. For example, a tree has a certain structure. Observers easily can rec-
ognize two parts: one trunk and many branches. By “zooming” closer, they will see that the
branches have their own structure. One part of it is comprised of leaves. Also these have a
specific structure. The observers can continue doing this until the level of atoms or beyond.

This leads to a model that proposes structure as being built upon structure recursively.
However, if everything is structure, where would be “data”? It can be argued that data ap-
pears at the level where structure is no longer perceived. Therefore, this model provides that
elements are both structuring and structured at the same time.5 It is a matter of detail that a
person perceives.

We call the level of details in our research structure level. It is also named “scale” in the
literature: Ware (2004, 338–339) distinguishes between three different scales: scaling with
respect to specific spatial locations (e. g., Europe on a world map); conceptual levels of detail
(e. g., level of bookshelf→ book→ text, etc.); and timing of events (e. g., following a package
from being sent to its delivery).

Humans can “jump” from one scale or structure level to another. For example, this can
be performed by rapid zooming in graphical computer applications or by getting closer to a
document in the real world. In both cases, more details will be revealed (assuming that they
exist in the computer application).

2The 17th ACM Conference on Hypertext and Hypermedia, Odense, Denmark, will be the first conference in
this series with a special focus on “Tools for Supporting Social Structures” (see http://www.ht06.org; visited on
2006-04-06).

3Lombardi writes in an artist statement about his drawings: “I call them ‘narrative structures’ because each consists
of a network of lines and notations which are meant to convey a story, typically about a recent event of interest
to me, like the collapse of a large international bank, trading company, or investment house. One of my goals is
to explore the interaction of political, social and economic forces in contemporary affairs.” (Lombardi, 1997)

4This and other drawings can be seen on http://www.pierogi2000.com/flatfile/lombardi.html (visited on 2006-04-06).
5This is further discussed in Sect. 6.2.5 with respect to a research direction called structural computing.

25

http://www.ht06.org
http://www.pierogi2000.com/flatfile/lombardi.html

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 26 — #28 i
i

i
i

i
i

Chapter 1. Introduction

A single structure may consist of several structure dimensions that exist in parallel. For ex-
ample, a spatial structure may use spatial alignment of objects to express relationships among
them. Another relationship may be color. Red colored nodes, even though not necessarily
placed closely to each other, may represent nodes of the same kind. Objects with such vi-
sually represented data variables are called glyphs (Ware, 2004, 176–185). Other possible
visual variables include shape, orientation, surface texture, motion coding, and blink coding
(Ware, 2004, 183). They can be used in parallel.

There are other structures that live in parallel. They are discussed originally in linguistics
as textuality criteria. They are used to express the relation among different parts of a text. The
most relevant criteria in this work is cohesion. It describes grammatical dependencies on texts
(de Beaugrande & Dressler, 1981, Chap. 4). The remaining textuality criteria are coherence
(meaning), intentionality, acceptability, informativity, situationality, and intertextuality.

A text can be described according to its intrinsic grammatical connections among its parts
(i. e., cohesion); it also can be seen with respect to the coherence among its parts; etc. There
has been research done in evaluating hypertext with respect to these criteria (Hammwöhner,
1997; Brügger, 2001).

1.2.3. Importance of (Structure) Details

Detailed representations may be disturbing, but they also may be necessary to understand
information correctly. Consider the following story:

A Mafia boss was found dead inside his car. He has been shot. The car is not
damaged. All doors are locked and the windows up. The only key is still in the
ignition lock. However, no weapon was found in the car. How can the Mafia boss
possibly be shot?6

It seems mysterious how the Mafia boss can possibly be shot, since the car is locked from
the inside and no pistol or gun was found inside. The text is an abstraction of what happened
in reality. The author leaves away irrelevant information, for example, that swallows passed
along when the police arrived. However, since this is a riddle, some relevant information are
missing as well. The circumstances become clear when it is revealed to the listener that the
car was a cabriolet.

The information about the type of car was hidden on purpose; otherwise, the riddle would
have been spoiled. This was an intended violation of Grice’s conversational maxims of
quantity and manner (Grice, 1975).7

What is obvious with this riddle is not always obvious for other cases. We have referred
many times in the previous sections to structure types or applications that borrow ideas or
concepts from the real world: they implement metaphors. In order to implement a metaphor,
the relevant part of the real world needs to be analyzed. A description is more abstract than
the described item or situation. Grice’s second part of the maxim of quantity – “Do not make

6Storyline taken from Springfeld (2004).
7We see the first part of the maxim of quantity – “Make your contribution as informative as is required” (Grice,

1975, 45) – violated, because in order to understand the circumstances fully, the information about the car being
a cabriolet would have been needed. Furthermore, we also see one of the maxims of manner – “Avoid ambiguity”
(Grice, 1975, 46) – is violated, because the term “car” can be seen as ambiguous in this case: either a vehicle
with a closed car body or a cabriolet. The author intends to make the recipient think of a closed car. The maxim
of quantity and the maxim of relation were met, however.

26

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 27 — #29 i
i

i
i

i
i

1.3. Use Case Scenarios

your contribution more informative than is required.” (Grice, 1975, 45) – becomes a problem.
Leaving away information may lead to models that miss helpful parts or behavior.

This means for the descriptions of structures that one must pay attention and argue carefully
why one stops unfolding or perceiving structures at that particular level, but does not go
further.

1.3. Use Case Scenarios

This section shows the use of rich structure details in office work by slightly exaggerated use
case scenarios. They additionally provide an impression of the main focus of this work.

The central person of the use cases is Otto, a knowledge worker. He works in a company
dealing with lots of information daily. His workflow includes paper as well as digital docu-
ments. Otto needs to find certain documents for his projects. In the following, we describe
the questions Otto raises and his answers with respect to the used medium.

Otto’s question: “Where did I put the red document that I had two days ago?” – Otto using
computer: “I don’t remember the folder I put it to, certainly not into my file archive.
I cannot search for keywords, because I don’t remember them either. My directory
folders contain thousands of documents.” – Otto using paper: “I had the document on
my desk. I remember that I did not file it yet. It is somewhere in my piles, probably in
the messy one, because I did not have time to sort those either. There it is! I can see
parts of the red paper peeking out of this pile.”

Otto’s question: “I had something in mind, but do not remember what.” – Otto using com-
puter: “No idea. This is similar to when I was looking for the red document, only
worse.” – Otto using paper: “Good that I saw this document on my desk. It reminded
me of what I need to do today.”

Otto’s question: “I lose the overview of my documents, because I simply have too many of
them here.” – Otto using computer: “There are many documents in my folders, but I
will not spend the time now to reorganise. It would take too long.” – Otto using paper:
“I cleanup my desk daily, because otherwise I would run out of space. I get rid of what
is obsolete, and become aware of important documents. This does not take long, but it
helps to sort my documents and thoughts constantly and prioritise them.”

Otto’s question: “There were three versions of this report. Which one is the final one?” –
Otto using computer: “Well, I have to check their creation date; however, this may not
be true, because an earlier version was sent to me later by e-mail. It will take some
time, but I will find out.” – Otto using paper: “I remember that the final version has
been bound as book, because it will not change anymore. An earlier version that I
printed is this pile over there, because I only used it temporarily for browsing through.
The pre-final version is this stapled one. I remember that a colleague stapled it before
giving it to me in order not to mess up the sequence of pages. It was easy to remember
the different versions, based on how the pages were put together.”

Otto’s question: “Where is the catalogue that has about 600 pages?” – Otto using computer:
“I remember that the catalogue is a PDF document, but in my file system browser I
cannot see how many pages the PDF files have. It is not practical to open all of them.”

27

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 28 — #30 i
i

i
i

i
i

Chapter 1. Introduction

– Otto using paper: “Finding this 600 page book was not a problem. I found it right
away because it is big enough that it caught my eye immediately.”

These cases show situations where Otto finds information more easily on his desk, espe-
cially when information is missing that could be used for searching conveniently on comput-
ers. Otto is reminded by the existence of documents on his desk. Various bindings, such as
stapled piles or books, attach information about the document that Otto helped to find it. A
high level of structure details is provided. Because his desk is limited in size, he needs to
clean it up regularly, which he might not do otherwise. However, restructuring makes him
aware of all documents on his desk that are part of his current workflow. This raises the ques-
tion of how Otto’s computer application could be modified in a way that would allow him to
gain similar positive effects in such use cases using computers.

In the beginning of this research project, observations similar to the aforementioned use
cases made us consider that real paper might show advantages in certain situations compared
with computer applications, including those that are metaphor driven. In order to develop
our inspiration further, we worked on finding differences between physical paper and digital
equivalents. Beside physical restrictions, such as capacity, weight, and size, we also consid-
ered differences between moving physical versus digital objects spatially and changing focus
and context.

Furthermore, we considered paper structures, such as piles. Many of these look more
or less sloppy, whereas graphically presented objects on a screen are often neatly aligned.
Based on our first impression and some thought experiments, such as the aforementioned
use cases, we expected that properties of physical objects would help users organizing and
finding information more efficiently compared to paper metaphor-based applications without
those properties. This includes fixed size documents (simulating paper), emerging sloppiness
(simulating movement of physical objects), and efficient focusing (simulating eye focusing).

In this thesis we walk along the line of physical paper and computer by taking a closer
look at the background and origin of our work: paper metaphor-based applications used for
knowledge work in offices. How can we improve such applications for knowledge workers to
gain some of the positive effects that we have with real world paper.

1.4. Summary and Agenda

In summary, we note that there is a variety of different structures used for knowledge repre-
sentation. Many of them are designed to be used on computers; however, some can be also
experienced in other areas, such as art. Many of those structures have a direct or indirect
connection to real world objects in use (i. e., metaphor) or terminology; for example, when
referring to nodes as cards on a (virtual) desk.

Structure elements are both structuring and structured. What is known as “data” can be
perceived as “structure” as well. From a human perspective, “data” appears when structure is
not relevant for the task at hand. A person can “jump” between different levels of structure.
This is true for physical (e. g., paper) as well as for computer related structures. There may
be different layers of structure found in parallel as well.

The example with Grice’s maxims has shown that structure analysts should be aware of the
abstract nature of their description. People need to question the chosen level of detail in order
to reveal potential deeper structure levels that may help to improve an application or structure

28

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 29 — #31 i
i

i
i

i
i

1.4. Summary and Agenda

technique. The use case scenarios round off the introduction with examples that show the
relevance of structure details and metainformation in office work.

These underlying observations will be the ground for the following chapters. They are
grouped in three parts: Part I discusses the theoretical background of our work. Part II de-
scribes the application implementation, experimental design and evaluation, concludes this
work, and refers to open future work. Finally, Part III contains the appendix.

In Chap. 2 we investigate in describing physical paper structures and compare them to
computer applications that are based on paper metaphors. We aim to find out differences
between structure or behavior of physical paper and the analyzed applications. We pick some
of the raised questions to formulate them as hypotheses in Chap. 3. This concludes Part I.

The hypotheses are of such kind to be tested by usability evaluations on an application pro-
totype. Chapter 4 presents the implementation of the prototype. We will use the application
for a usability test that we describe and evaluate statistically in Chap. 5. Finally, we conclude
our research in Chap. 6 and discuss open questions and potential future investigations.

29

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 30 — #32 i
i

i
i

i
i

Chapter 1. Introduction

30

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 31 — #33 i
i

i
i

i
i

Chapter 2.

Analysis

„Wenn nun plötzlich all die kleinen
Pausen wegfallen, zum Eintau-
chen der Feder, zum Nachfüllen
des Halters und zum Ablöschen
der Tinte, wann um Himmelswil-
len soll man dann noch Ideen
entwickeln?“

(Friedrich Nietzsche criticizing
ballpoint pens)

2.1. Overview

This chapter discusses our analysis of real offices as well as of relevant applications. It pro-
vides the foundation of our hypotheses. The idea is to analyze paper and its appearance in
collections in great detail and compare it to paper metaphor-based applications to point out
the differences. We investigate finding out positive or negative effects these properties have
for organizing and finding information. In this chapter, we raise many questions. Some of
them are taken as our hypothesis (Chap. 3) and used for further investigation (Chap. 4 and 5).

The discussion on physical paper structures is divided into three subsections. Firstly, we
put our work in context of previous research about how people organize paper (Sect. 2.2.1).
Secondly, we show our observations (Sect. 2.2.2) and raise them onto abstract level, devel-
oping a taxonomy for bindings (Sect. 2.2.3). We also point out influences of constraints and
emerging metainformation on paper-based structures (Sect. 2.2.4).

The second part of this chapter describes applications that aim completely or partly to
implement paper behavior (Sect. 2.3.1). For a closer analysis, we take spatial hypertext ap-
plications, a subdivision of paper metaphor-based applications, and compare them to our real
world observations (Sect. 2.3.2). This comparison delivers relevant open questions. We will
answer some selected ones in Chap. 5.

2.2. Structures Built with Real Documents

2.2.1. Related Research

This section gives an overview of related work on paper-based structures in the real world
(see also Atzenbeck & Nürnberg, 2005b, 52–54). It is an interesting observation that there is
only little related research published. Whittaker & Hirschberg (2001, 150) mention the fact

31

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 32 — #34 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.1.: Maps of two offices by Malone (1983, Fig. 1 and 2) – c© 1983 ACM, Inc., used
with permission

that “[d]espite the past importance of paper archives in office work, there are still relatively
few studies of their nature and function”1.

One article to which Whittaker & Hirschberg (2001) refer is written by Malone (1983)
and cited in various other publications. Malone describes how people organize their desks.
At first glance, it is similar to what we did; however, the classifications are different. One
aspect is the abstraction level. Malone describes paper structures in less detail. Figure 2.1
depicts drawings of two offices. They are taken from Malone’s article. All document piles
are right-angled, even the right drawing, which shows a room “filled with loosely stacked
piles of mixed content” (Malone, 1983, 103). It can be assumed that piles or documents had
various rotation angles, even though this is not represented in the drawings. In comparison,
Fig. 2.2 to 2.4 on pages 35–37, which we analyze in detail later, show pictures of the real
world, including all those nuances.

Malone does not argue why he used this specific level of abstraction. His choice seems
to be arbitrary. This is not necessarily bad. It depends on what the describing person wants
to show. However, the recipient needs to understand that the description hides details that
existed in the real office. In contrast to Malone (1983), we focus on a lower abstract level
and therefore richer details in our descriptions. However, this is also an arbitrarily chosen
abstraction level.

Beside the level of details, we also differ in the usage of terms; partly, because we distin-
guish between a larger number of different types. Borrowing terms from Tsichritzis (1982),
Malone classifies structures as file and pile:

“[F]iles are units where the elements (e. g., individual folders) are explicitly titled
and arranged in some systematic order (e. g., alphabetical or chronological). In
some cases, the groups themselves (e. g., entire file drawers) are also explicitly
titled and systematically arranged; in other cases, they are not. [. . .] In piles, on

1In this context, Whittaker & Hirschberg (2001, 150–151) refer to Cole (1982), Kidd (1994), Lansdale (1988), and
Malone (1983).

32

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 33 — #35 i
i

i
i

i
i

2.2. Structures Built with Real Documents

the other hand, the individual elements (papers, folders, etc.) are not necessarily
titled, and they are not, in general, arranged in any particular order.” (Malone,
1983, 106)

As argued in Sect. 1.2.2, we focus mostly on cohesion, not coherence (meaning). There-
fore, titled elements or ordered sequences are not relevant for us. For example, Malone’s
descriptions (Malone, 1983, 106) of an unordered bookshelf, which he calls a pile, or sorted
shelves in a library, which he calls files, would be the same for us. A similar difference can
be experienced when he writes about his interviews with those who worked in the observed
offices: “The interviewees were asked to give the interviewer ‘a tour of their office,’ explain-
ing what information was where and why it was there. [. . .] The interviewer also attempted
to focus the discussion on the information present in the office, not on physical artifacts such
as staplers, blank paper, and so forth” (Malone, 1983, 100). Except for some few cases, we
describe observed structures without asking what information they contain or the reason they
are structured in a certain way.

Malone (1983, 110–111) mentions four different reasons for creating piles. Firstly, it may
be too difficult for the person to create folders or binders according to the desired structure,
especially when multiple structure levels are intended. Secondly, the user may have difficul-
ties in creating categories that would be needed for easy retrieval later. Thirdly, a person may
want to be reminded by the document and therefore keep it visible on the desk instead of filing
it. Finally, a person may want direct and easy access to a document, for example, because it
is frequently used.

Lansdale (1988, 56) agrees with Malone about the problems that may occur when classify-
ing documents. However, even though piles do not classify their containing documents, they
still may help a person in finding information. For instance, knowledge workers may find
documents by remembering the location where they placed them previously, or can possibly
reduce the area where to look for them. Also, browsing through piles may let them find infor-
mation by recognizing documents’ visual appearance. Some implicit metainformation was
attached automatically during creation, for example, more recent document appear usually
more on top of a pile than older ones. We investigated emerging metainformation and will
discuss it more detailed in Sect. 2.2.4.

Malone also uses the term finding versus reminding. He points out that filing information
in order to support better finding may not always be worth the time (Malone, 1983, 104–
105). In fact, more recent research has shown that pilers access more documents than filers,
mainly caused by “large overheads for constructing, maintaining, and rationalizing complex
systems” (Whittaker & Hirschberg, 2001, 161) when filing. The same survey also reports
statistical significance in filers preserving larger original archives and having more preserved
information left after cleaning. The time aspect of organizing information is also important
for our research. For example, it relates to our observation about paper structures affected by
a person’s lack of time, as we discuss in Sect 2.2.2.

In addition to finding, reminding is “an equally important function of most desk organi-
zations”2 (Malone, 1983, 106). We will describe several types of paper-based structures in
Sect. 2.2.3, which support a high level of reminding, such as covering or open placed individ-
ual pages.

2Malone (1983, 107) made “a rough analysis of the piles visible in the photographs[, which] suggests that of those
for which uses could be determined from the interviews about 67 percent were piles of things to do, presumably
placed there to serve as reminders.”

33

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 34 — #36 i
i

i
i

i
i

Chapter 2. Analysis

Beside statistical tests on experiments that are based on filing and piling, Whittaker &
Hirschberg (2001, 151) discuss also “[t]he uniqueness hypothesis[, which] concerns the rea-
sons why people retain paper information”. As mentioned earlier, we do not consider why
office workers create certain structures, except for marginal parts in our discussion. There-
fore, this topic is of less interest for our work.

Cole (1982) classifies filed information as “action information”, “personal work files”, or
“archive storage”. The first term refers to information that is used frequently by users. The
cognitive model is “predominantly spatial” (Cole, 1982, 61). This compares best to Malone’s
piles. Interactions with personal work files are less frequent. The user is aware of location
and classification of information. Finally, archive storage holds information that is exclusively
classified. Spatial information does not play a dominant role anymore. Personal work files
and especially archive storage are mostly files in Malone’s terminology. Cole (1982) does not
describe the appearance of paper structures. Therefore, it is not of prime importance for our
research to discuss this further.

Kidd (1994) points to the need of office space for knowledge workers for placing paper even
on the floor. In Malone’s terminology, Kidd describes piling behavior. He further discusses
types of knowledge workers and their behavior. In our work, however, we will focus on paper
and paper structures rather than on their creator.

Some other research directions discuss note taking (Khan, 1994) or forms (Tsichritzis,
1982). Even though it is interesting and important for understanding how people work with
paper, it goes beyond our focus. This is similar to research that is done in the field of anno-
tation and hypertext (Marshall, 1997, 1998). Even though we mention annotating structures
later in our analysis, we still view the physical structure itself, not the written content.

2.2.2. Our Observations

Our observations of real world structures are based on several use cases. In the following we
discuss Britta’s office, which is representative for most other use cases.3 Britta is a secretary
at a university. Daily, she receives much information to be processed.

We describe the discovered structures that involve paper. As argued above, we focus on
the physical structure. Discussions about why they were created may help to understand more
complex matters, but is not of prime importance to our work.

Structures

Britta’s main workflow relays essentially on paper. Since paper is part of the real world, it also
is subject to real world forces, such as placement within certain dimensions (spatial aspect),
gravitation, friction, changing appearance related to light, distance, position, or size, among
others. Structure depends on the possibilities of the chosen media. In any case, there are
limitations.

Britta uses specific locations, which are assigned to specific topics. For instance, she uses
different areas on a shelf for placing student papers. Additionally, she puts student papers
on the floor in front of the designated location on the shelf, as shown in Fig. 2.2. This hap-
pens when she does not have the time to put them to the right place immediately. In the
terminology of Malone (1983), those would be called “piles”. However, since we focus on

3We would like to thank Britta an all other involved people for answering patiently the many questions we had
about their paper work and workflows.

34

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 35 — #37 i
i

i
i

i
i

2.2. Structures Built with Real Documents

Figure 2.2.: Unstructured heaps of student hand-ins on the floor

their appearance, we call them heaps. Even their internal structure depends on time: The
lowest paper came in first. This observation is identical to the one given in Lansdale (1988,
56). Nevertheless, Britta calls the internal structure of a heap “unstructured”, mainly because
the structure was initially not intended. She does not consider emerged metainformation as
“structuring”. The documents’ locations are a necessary prerequisite for creating heaps and
to be recognized as belonging together. Additionally, their place in front of the shelf indicates
to which class or category they belong to.

The “unsorted” student hand-ins that were placed on the floor can be recognized as group-
ings. Figure 2.2 shows one big heap on the left hand side. Originally there were at least two
well shaped stacks, but they became covered by randomly placed folders and turned into a
single heap.

The middle part of the picture shows also some stacks. However, even those seem to morph
from well placed ones to amoebic looking shapes. This happens usually when new documents
are not positioned precisely onto a stack. The stack becomes more sloppy.

This shows that time plays an important role in the way paper structures evolve. If there is
no time left to put paper to the place where it actually belongs to, it has to be placed some-
where else. Apparently, the less time there is for structuring the more “chaotic” a structure
becomes.

Beside the time factor, there are also other constraints in paper structures. For example,
Britta divided information that would belong together and put the two parts to different places.
We noticed this with paper work for students’ grants. Originally, there was one binder that
contained all information. After some time, Britta had to create a second binder; however,
there was no space left next to the first binder on the shelf. A larger portion of the shelf would
have to be restructured in order to receive vacant space to put both binders side by side.

This example shows constraints at two levels: Firstly, the possible amount of paper within
a binder is limited. A second binder had to be created after the first one was full. This first
step already requires some restructuring. Secondly, the bookshelf is also limited in space.
Because the part where the first binder was located was occupied, the new binder had to be
placed somewhere else. In the above described example, Britta had no time to restructure

35

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 36 — #38 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.3.: Britta’s “center of work”

the book shelf immediately. This draws a dependency of paper structure constraints to the
available time for structuring.

Figure 2.3 shows Britta’s “center of work”. It includes computer keyboard and monitor.
Britta pointed out specific locations where she puts information:

• Urgent tasks are put between keyboard and monitor. They are not processed at that
time. However, the location makes them visible for Britta at any time she sits in front
of the monitor. The space is small and can take only a small number of documents.
Britta removes them once they are not longer used or not urgent anymore.

• Occasionally, Britta also puts very urgent and important documents on top of the key-
board. She uses the keyboard very often. Paper that covers the keyboard prevents her
from typing. Britta uses this to be reminded of the covering documents. She is forced
to take them off before she can use the computer. There are two main differences com-
pared to the place in between keyboard and monitor: Firstly, the documents on top of
the keyboard require an action in order to use the computer. Secondly, the keyboard
cannot carry as many documents as the space behind, because its keys would be pressed
down and may lead to unintended results on the computer.

• Frequently used lists, for example, student group listings, are placed next to the monitor.
Britta can reach them easily. However, in order to select the desired list quickly, this
space needs to be kept free from other documents.

• Britta uses sticky notes to note important and short information. She puts them onto the
monitor’s front side. Because of their vertical adjustment, they usually are not covered
by other documents. Additionally, they are placed in a way that helps reminding Britta
of their content. They also can be found on other spots, mostly put within the main
working area. The chosen places let them be visible to Britta most of her working time.
They usually are completely visible, for example side by side, as shown in Fig. 2.3.

36

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 37 — #39 i
i

i
i

i
i

2.2. Structures Built with Real Documents

Figure 2.4.: Britta’s workspace

We could see at Britta’s desk that documents that have to be processed urgently or are
important are placed at areas where work is frequently done. Very urgent matters may be
even placed in a way that forces Britta to remove it within a short period of time, for example,
on top of the keyboard. Britta puts paper, which she wants to write on to right of the keyboard,
where conveniently writing is possible.4

Britta puts documents that are not urgent, but still needs to be processed, on both sides of
the “central work space”, that is, where the keyboard is located. On the left hand side are
documents that she uses occasionally. They are spread to provide a better overview of their
content. The area to the right of the “center” is depicted in Fig. 2.4. At the right lower corner
of the picture is a stack mostly of printed e-mails that Britta needs to work on. There is no
specific ordering among them. Britta browses through them from time to time, pulls-out one,
and continues working on it after putting it to the work space area. The stack is sloppy. This
helps to provide some information about what documents are located there without touching
the stack.

We experienced at Britta’s office that documents that are unimportant or less urgent are put
further away from the central work space. Archived documents can be found primarily on
shelves and the window ceiling. This includes student papers, regulations, forms, etc.

Some spots on the desk or on the floor are used to store documents temporarily that will
be archived later. For example, Fig. 2.2 shows student hand-ins on the floor to be filed later.
It is not their “final” archive. Constant restructuring is necessary; however, Britta did not
have time to file them yet. This shows the temporal aspect of spatial structures in active work
environments.

Time influences even documents in archives. They may be there only for some period.
After that they might be restructured, become parts of other structures, be thrown away, or
become decomposed by aging.

4The side may vary among right-handed and left-handed persons. Britta writes with her right hand, therefore the
right side for the current work is most convenient for her. At the same time she is able to use the mouse with her
left hand.

37

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 38 — #40 i
i

i
i

i
i

Chapter 2. Analysis

A5 Executive Letter A4
Legal

A3 Ledger/Tabloid

ISO 216

ANSI X3.151-1987 or ANSI/ASME Y14.1

148 mm
 ×

210 mm

190 mm
 ×

254 mm

216 mm
 ×

279 mm

210 mm
 ×

297 mm

216 mm
 ×

356 mm

297 mm
 ×

420 mm

279 mm
 ×

432 mm

Figure 2.5.: Selected ISO and ANSI paper sizes (see Kuhn, 1996; Bergman & Hastings, 2002;
EDS Inc., 1997)

Main Paper Types (Sizes)

This section describes what paper types Britta uses for her work. We will focus exclusively on
their size (length and height), not on other attributes, such as paper quality or color nuances.
We also do not discuss related devices such as pen, stapler, or printer.

ISO A4 Paper The ISO 216 standard defines paper sizes (Kuhn, 1996). It is used by most
countries worldwide. It describes ISO A, B, and C series of paper formats. This thesis is
typeset for ISO B5 paper size. However, we focus on ISO A-sized paper, which we assume
to be the most often used paper size among the ISO 216 defined series. The basic format is
ISO A0, which covers 1 m2. The ratio of width to height is 1 :

√
2. This is the only ratio which

stays the same if a paper is cut along the middle line of the
√

2 ratio side. This ratio reaches
back to the German scientist Georg Christoph Lichtenberg (1742–1799), who probably was
the first who noted the advantages of this relation. Later, Porstmann (1918) discusses also
aesthetic aspects of this format, that other formats do not have:

„Es kann keiner geometrischen Form eine besondere Schönheit untergeschoben
werden. Es findet jedes Format seinen ästhetischen Vertreter. Es ist einzig Ge-
wohnheit, wenn wir dies oder jenes Format in einer gewissen Grenze auswählen,
falls wir auf sogenannte Schönheitsgründe aufbauen. Nur wenn eine Form ge-
streckte Zwecke gut erreichbar macht, ziehen wir sie – unbewußt vielleicht äs-
thetische Momente unterschiebend – als ausgezeichnet vor. In diesem relativen
Sinne der Schönheit der einzig anwendbar ist, ist unsere gefundene Form eben-
falls ,schön‘, was man sofort empfindet, wenn man nicht ein einzelnes Format,
sondern die durch forgesetzte Halbierung daraus gewonnene Reihe betrachtet.
Alle anderen Ausgangsformate liefern dabei zweierlei Formen, nur das mit dem
Seitenverhältnis 1 :

√
2 liefert eine Reihe ähnlicher Formate, eine einzige Form.

Diese Harmonie empfindet man als schön.“ (Porstmann, 1918, 201)

Paper formats with this ratio became a DIN standard in Germany. Later it was adopted
as an international standard (ISO) and recommended by the United Nations (Working Party

38

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 39 — #41 i
i

i
i

i
i

2.2. Structures Built with Real Documents

on Facilitation on International Trade Procedures, 1981). However, it is still not adopted
by some countries, for example, the USA, which used to have even two official standards
for ISO A4 equivalent paper size: 8.5 in× 11 in (Letter format) for the U. S. industry and
8 in× 10.5 in for the U. S. Federal Government (Dunn, 1972, 6–7). The paper standard for
the U. S. government changed in 1980 to 8.5 in× 11 in (Kuhn, 1996). Some common paper
sizes in the USA in comparison to selected ISO formats are depicted in Fig. 2.5.

Beside the fact that using non-standard paper sizes may capture the reader’s interest, it also
has some drawbacks, which are discussed in Dunn (1972, 10–33). Most of them come back to
economical disadvantages, based on the need for special storing facilities or machines. ISO A
paper sizes can also be cut into two parts, which creates two other ISO A paper sizes without
any waste.

This discussion leads to the question about which paper sizes would support workers’ struc-
turing tasks most conveniently? Whereas the ISO standard with its 1 :

√
2 ratio has some aes-

thetic and practical advantages, we could not find research results with similar conclusions
for comparable paper formats, such as Letter, Legal, or Executive format used in the USA.

We assume ISO A4 the most common paper format in Europe, therefore, we were not
surprised that most of the paper in Britta’s office is A4 format. All documents printed on the
departmental printer have this format.

Sheets may be part of structures at various levels, for example, loose or bound. For the latter
one, they can be structured inside binders, folders, or transparent sheets, or be clipped. These
techniques shift loose A4 paper to the next structure level (see also discussion on page 47).
Most A4 paper in Britta’s office are organized as stacks or inside binders.

The use of specific media types depend on their availability. This is related to introduced
standards and available machines, such as printers.

Sticky Notes Britta uses sticky notes for handwritten information. She uses two different
sizes: 50 mm×40 mm or 75 mm×75 mm. Neither of them follow the ISO 216 ratio of 1 :

√
2.

There is a supply tray for the squared sticky notes, which can be found on a central place
within the main working area, visible in Fig. 2.3. Even though they look similar to annotation
aids, Britta mostly does not use them as such. For example, some of them are attached to the
monitor. They do not hold information about the monitor or related to it. The information even
does not necessarily have to do anything with Britta’s work on the computer. As discussed on
page 36, she uses this place to be reminded of important matters that she wrote on the sticky
notes. There is also a minor risk that they will be accidentally covered.

2.2.3. Structure Descriptions

In the following sections, we analyze our observations. Parts of our discussion will influence
the implementation of our prototypic application (see Sect. 4.2.3). Additionally, we introduce
informally the used terminology.

Binding Types

We applied three scales on our observed structures that express their level of overview, divi-
sion, or annotation. Table 2.1 shows their impact for overview, division, or annotation. The
scale has four possible values (++, +, −, −−). More pluses mean a higher support, minuses
less support. “N/A” is used in cases where an attribute can not be applied uniquely.

39

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 40 — #42 i
i

i
i

i
i

Chapter 2. Analysis

Structure Type Overview Division Annotation

open placed objects ++ ++ −−
cluster with overlays ++ ++ −−
stretched stack + + −−
heap + − −−
stack −− −− −−
folder − − −−
drawer −− − −−
binder − −− −−
stapled − −− −−
book − −− −−
blotting pad N/A ++ −−
zigzag stack − ++ −−
pull-out − + ++
folded document −− N/A ++
sticky note N/A N/A ++
code (on objects) N/A ++ N/A

Table 2.1.: Tendencies of overview, division, or annotation of different paper bindings

stretched stack
(vertically)

stretched stack
(horizontally)

stretched stack
(vertically + horizontally)

cluster with
overlays

open placed
objects

Overview Overview + Grouping

Figure 2.6.: Overview structures

The described binding types are not nearly complete. They are a selection based on our
observations. There are many more binding types. For instance, scripture roles are not used
commonly in the western culture nowadays, whereas they were common in classical Egypt
or Judaism.

Overview Support This section describes structure types that have the primary goal to pro-
vide an overview of the content, even though there is also a grouping aspect. Figure 2.6
depicts different kinds of this category. Table 2.1 points out their good overview capabilities.

Open placed individual objects show all or most of their viewable content. This is, for
example, for single sheets their surface, or for stacks their viewable part, such as in most
cases their first page. Objects are facing the recipient for easy reading. These structures
are very space consuming, depending also on the size of the objects. If the available space
becomes too small, the objects may be moved closer to each other until they overlap. This
structure can be recognized as cluster with overlays. Its members have a larger viewable area

40

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 41 — #43 i
i

i
i

i
i

2.2. Structures Built with Real Documents

stapledfolderstackheap drawer binder book
Grouping

Figure 2.7.: Grouping structures

than a heap (which we will discuss later) and align toward the user with only little rotation.
All documents are at least partly visible.

Open placed objects or cluster with overlays can be used to cover objects, such as a com-
puter keyboard, in order to be reminded of processing them. We discussed an example on
page 36.

Variations of the discussed overview structures are stretched stacks. Three variants are
depicted in Fig. 2.6: Vertically or horizontally stretched stacks as well as stacks that are both,
vertically and horizontally stretched. In all cases, they increase the overview of their content
in addition to the primary task of dividing its parts and grouping the whole. Their orientation
towards the recipient supports its grouping force, because documents are equally aligned.

Grouping and Division Support Table 2.1 notices the level of division at its second col-
umn. In our terminology, “division” is the opposite of “grouping”. Bindings with weak
division, for example, binder or book, have strong grouping forces. Figure 2.7 depicts group
forcing structure techniques for paper. A heap5 is a sloppy pile of loose documents. A heap
may have two non-overlapping documents at the same horizontal layer. A stack is similar to
a heap; however, its contained documents follow tighter bounds. A stack appears sharper and
better defined in its occupied area. Normally, each layer is taken by exactly one document.
However, sloppy arrangements can be experienced also on stacks, as indicated in Fig. 2.7.
Documents can easily be pulled-out. This is easier to manage for stacks, because heaps have
sloppier bounds, which would force the pulled-out paper to move far outside. In cases where
the heap has very sloppy bounds, a pull-out may be even not recognized as part of the heap.

Folders and transparent sheets support paper collections. They define an exact upper and
lower bound of a stack. Those two boundaries are connected and recognized as one single
folder or transparent sheet. They are very limited in capacity. Most of them cannot host stacks
higher than few centimeters. Pulled-out papers are still possible; however, in a more limited
way, because one side is closed by connecting front and back cover.

Drawers and trays have sides. Basically, a drawer or tray is a box with an open side. The
document inside has to follow these boundaries. There are different types of drawers or trays.
Pull-outs are possible with any kind of them, but depending on the their location, they may
have to follow partly the tray’s or drawer’s side up, as depicted in Fig. 2.8.

Binders add a new quality of grouping documents: The grouping forces are much stronger
than at the previous discussed types, for example, open placed objects or heap. In order to

5It has been suggested that this structure could also be named “disoriented pile”. However, this would not repre-
sent the larger area which a heap occupies compared to a stack. We asked English native speakers about their
understanding of the used terms. They were satisfied with our terminology in this context.

41

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 42 — #44 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.8.: Tray with paper stack pulled-out

zigzag (90°)
stack

blotting pad pull-out sticky
note

folded
document

code
(on objects)

Division Annotation Other

Figure 2.9.: Division, annotation, and other structure types

change the paper sequence, the binding mechanism has to be opened. Punched sheets usually
cannot be moved while they are held by a closed binder mechanism. They may be moved a
little, depending on the free play of the punched holes and the binding mechanism part that
goes through them.

Whereas binders can be restructured easily after opening their binding mechanism, it is
more difficult for stapled documents. It is possible to remove the staple, either with a tool or
by hand. However, the location where the staple was, will show some damage in any case.
Because of this, a stapled stack is usually a more final grouping than a binder, even though the
paper of a stapled stack can be moved further to the outside (rotated), than it is possible with
paper held by binder mechanisms. There is the restriction that the paper are fixed at the spot
of the staple. Also, the staple allows sheets to rotate only to some degrees without damaging
them.

The most final structure among those depicted in Fig. 2.7 holds books. They are bound. It
is not possible to reorder its pages without destroying the book, or to move a page outside,
not even slightly. Books bind shaped stacks of sheets very strictly and do not allow variations
without damage, once bound.

The first two iconographic structure representations in Fig. 2.9 demonstrate techniques, that

42

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 43 — #45 i
i

i
i

i
i

2.2. Structures Built with Real Documents

Figure 2.10.: Colored binders

primarily are used to divide sets of documents. The first example depicts a blotting pad, that
covers a document and has another document on top. We have experienced that sometimes
frequently used documents are put underneath, for example, phone lists. They can be accessed
easily without getting mixed with the documents on top, where usually current work is placed.

The second example for division supporting structures are zigzag stacks. They are often
built of other stacks, such that every second stack is rotated approximately 90 degrees. This
allows to pick up any sub-stack easily.

Annotation Support Annotation supporting structures can be found frequently in paper-
based office work. An annotation can be some text written on a paper as well as the paper
itself, marking a specific position. As already mentioned on page 34, we do not focus on
written annotations. The middle part of Fig. 2.9 displays three types of paper annotations.
The first example shows a pulled-out paper marking a position within a stack. Pull-outs can
be applied for most of the other mentioned structure types as well. They mark a specific
position.

As mentioned on page 41, some bindings make pull-outs difficult or impossible to create,
for example, books. A book page cannot be pulled-out without damaging the book. However,
for most of them it is possible to fold a page in a way that its height increases, as depicted
as the fourth iconography in Fig. 2.9. The increased height will mark its position within the
grouping.

A pull-out can also be simulated with an additional document, for example, an individual
sheet of paper. This makes it possible to apply this kind of structure conveniently to books or
binders as well. However, the additional document may not be part of the original binding and
possible not recognized as such by the recipient, for example, a white sheet of paper that is
used as a bookmark. A binding can also mark itself, for example by being folded, as depicted
in the previously mentioned figure.

The next example in Fig. 2.9 depicts a small paper sticked on another document. The small
paper annotates the larger object. The other way around would not be recognized by the user
correctly. We described some examples for sticky notes on page 36.

Other Structures Beside those structure types explained above, people also use color or
other signs to mark documents that belong together, as depicted at the last example of Fig. 2.9.
Figure 2.10 shows a real world example of a secretary’s shelf. She uses white binders to
indicate matters of university staff members and red ones for other target groups, for example,

43

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 44 — #46 i
i

i
i

i
i

Chapter 2. Analysis

Structure Type Grouping Binding Thickness
Aid Dimension Growth

open placed objects abstract area add
cluster with overlays abstract area add
stretched stack abstract area add
heap abstract area add
stack abstract area add
folder 2-sided area add
drawer 1-sided area none, add if > x
binder 2-sided line none
stapled 2-sided spot add
book 2-sided line add
blotting pad 1-sided area add
zigzag stack abstract area add
pull-out abstract area add
folded document abstract intrinsic double
sticky note abstract area add
code (on objects) abstract intrinsic add

Table 2.2.: Binding characteristics

students. Whether a person recognizes the binder colors as a grouping indicator depends on
various aspects. For instance, a person would need to know the semantics of the used colors,
such as that the binder’s color relate to different target groups. The location of the binder
plays an important role. A recipient may not recognize them as being related if they are put
too far apart.

Bindings Characteristics

In this section, we will categorize bindings according to their appearance or behavior. Ta-
ble 2.2 gives an overview of our observations. The core of this section was presented at the
ACM Conference on Hypertext and Hypermedia 2005 and published in Atzenbeck & Nürn-
berg (2005a, 63–64).

Grouping Aids Some of the observed structure types have add-ons that support grouping.
Everything that is not one of a structure’s grouped objects is classified as grouping aid. As
shown in Tab. 2.2, grouping aids can be one-sided, two-sided, or abstract. The last one appears
whenever a group of objects is recognized as a group, but does not have explicit bounds.
Examples of abstract grouping mechanisms are stack or open placed objects. Drawer or
blotting pad consist of one single layer on or underneath which the related substructure can
be found. Most well-known are two-sided grouping aids, such as folder, binder, or book.
They have a cover on two sides: on top and on bottom. Also, the staple of a stapled document
stack can be considered as two-sided, since it is visible from two sides.

44

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 45 — #47 i
i

i
i

i
i

2.2. Structures Built with Real Documents

Binding Dimensions Binding dimensions classify the behavior of elements that are applied
to the binding. Those can be area, line, spot, or intrinsic. For most aforementioned bindings,
there is an area in which the object may be moved around. For example, a single page that is
part of a heap may be moved within a designated area, without leaving the heap. Once it is
moved too far, it will not be recognized as an object of the heap anymore. Also a drawer and
a folder have binding areas, because they allow paper to move within an area freely, even if
parts of the paper hang over a drawer or are pulled outside a folder.

There are bindings that support a line as binding dimension, along which objects are bound
and along which a user may possibly turn documents. Examples include book or binder. In
these cases, pages have to follow a specific path when they are turned. A spot appears only
on stapled objects. It allows more freedom than a line binding dimension. The angle when
turning a page may vary. However, the binding dimension of a stapled stack may also be
interpreted as line.

A line can be seen as a spot with zero rotation. The same binding dimension may have
different ranges of possible angle ranges. For example, a pinned paper can be rotated 360 de-
grees, whereas a stapled stack (assuming it is interpreted as spot) only has a few degrees free
play.

Finally, intrinsic binding dimensions appear on folded or coded objects. The binding is
intrinsic and implicit. Coded objects are bound together, because they are grouped by having
the same color or symbol, not because of a certain location. However, space plays some role.
For instance, coded objects that are too far apart will not be recognized as members of the
same “color space”.

Thickness Growth Behavior An important behavior of paper structures is how they change
in thickness when new objects are added. Many of them just add the height of the new object
to the already existing one. For example, if the height of a stack is 10 cm and 500 single pages
of a total height of 5.1 cm are added, the new height of the stack will be 15.1 cm.

This is different for drawers. A drawer has a fixed height, even when it is empty. However,
if the height of the objects inside a drawer extends the drawer’s original height, the total height
just adds as with stacks.

Folding an object doubles its height.6 The height of binders does not grow. Binders have
a specific width, regardless of whether they are empty or full. Whenever the amount of paper
that can be put into a binder exceeds the capacity of the binder, a new binder has to be created.
An additional structure level gets pushed into the existing structure (see discussion on page 47
or Atzenbeck & Nürnberg, 2005b).

Bindings, including those that grow when new objects are added, have a maximum height
that is sometimes not precisely defined or dependent on various attributes. For example, a
stack will fall over after it has reached a certain height, or a book that is very thick, for
example, 50 cm, would not be useful anymore. Most office workers have the experience of
seeing what is useful or possible and what is not. A secretary who has already a quite high
stack on her desk will start a second one or even divide the one into two parts to prevent it
from falling over.

Slot Types, Structure Dissolution, and Automatic Conversion Table 2.3 shows possible
combinations of structure types that are discussed in this dissertation. The table has draft

6Not all objects can be folded, for example, it is possible with single pages, but not with binders.

45

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 46 — #48 i
i

i
i

i
i

Chapter 2. Analysis

X (↓) may bind Y (→) si
ng

le
pa

ge
op

en
pl

ac
ed

ob
j.

cl
us

te
rw

/o
ve

rl
ay

st
re

tc
he

d
st

ac
k

he
ap

st
ac

k
fo

ld
er

dr
aw

er
bi

nd
er

st
ap

le
d

bo
ok

bl
ot

tin
g

pa
d

zi
gz

ag
st

ac
k

pu
ll-

ou
t

fo
ld

ed
do

cu
m

en
t

st
ic

ky
no

te
co

de
(o

n
ob

j.)

open placed objects • • • • • • • • • • • • • • •
cluster with overlays • • • • • • • • • • •
stretched stack • • • • • • • • • • • •
heap • • • • • • • • • •
stack • • • • • • • • • • •
folder • • • • • • • • • •
drawer • • • • • • • • • • •
binder • • • • • • • •
stapled • • • • • •
book • • • • •
blotting pad • • • • • • • • • • • • • • •
zigzag stack • • • • • • • • • • • •
pull-out • • • • • • • • • •
folded document • • • • • •
sticky note • •
code (on objects) •

Table 2.3.: Structure types and potential related structure types

status; other interpretations are possible and there are exceptions that can be found in the real
world. We call potential sub-structures slot types, in relation to slots that can be filled with
designated structure types only.

Bindings may bind objects other than single pages. For example, a zigzag stack can be built
of books as well as of several individual stacks of stapled paper. Some other combinations
are not possible, for example, binders cannot be bound as a book, even though their content
may be used for that.

Combinations may also depend on other attributes, for example, the thickness of objects
that are to be bound. For instance, a common office does not have the facility to punch holes
in a book that is 8 cm thick. Therefore, this book cannot be added to a binder’s mechanism.
On the other hand, it is easy to punch holes in a 2 mm thin booklet and add it to a binder.

We made the important observation that some combinations change the type of one target
structure to the type of the other. We call this effect structure dissolution. For example, if
open placed individual papers are added to a heap, they will not be recognized as parts of the
previous structure anymore. They become direct members of the heap. The original binding
force is completely gone so that the objects become individual objects when given to the
target structure.

Another aspect is that some types are restricted to what objects they can take because of
their own size. For example, a folder usually cannot contain a sloppy shaped heap, because
its size is made for aligned objects, such as stacks. A similar example would be a drawer.

46

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 47 — #49 i
i

i
i

i
i

2.2. Structures Built with Real Documents

In
fo

 –
 B

In
fo

In
fo

 –
 A

structure
level 1

structure
level 2

structure
level 3

Figure 2.11.: Structure pushed to the next deeper level

A heap turns automatically into a stack when it is put into a drawer. This is an automatic
conversion of a structure type. Its structure does not dissolve. The binding still exists, but is
now of another type.

Some behavior may also cause automatic conversion of structure. As already mentioned,
a stack may fall over when it becomes too tall. This is a conversion from one structure type
into another, initiated by adding new objects to it.

Cases of structure dissolution or conversion are not explicitly marked in Tab. 2.3 yet. Both
are special cases of structures that may be brought together, but cannot exist together in a
contents relation.

Pushing Structure Levels Structure instances that are combined and did not dissolve cre-
ate an additional level of structure. For instance, consider a binder that cannot hold more
documents. A new binder is taken, which receives the remaining documents. We described
a real situation where this became necessary on page 35. The two binders are marked as
grouping, for example, by color or label. Figure 2.11 depicts an example: Originally, there
was one yellow binder with the label “Info”. It held various single pages. The binder is part
of structure level 1, but at the same time it structures its content (level 2).

The content then is split up, and cohesion of both binders becomes the the first structure
level, for example, equal size, color, or label. In our example, the label partly varies. In
addition to the previous “Info”, the letter “A” or “B” were added to indicate the appropriate
relation. The second structure level can now be found at the level of the individual binder.
It still structures and binds its content. The single pages within each folder are at the third
structure level.

The original structure levels were pushed to the next higher levels. A new structure layer
became inserted. This may have effects for finding information. For instance, a person who
has two binders similar to the ones depicted in Fig. 2.11 can cut down the amount of pages to
browse (structure level 3) in half by selecting the appropriate binder (level 2) of both binders
(level 1). This is in comparison to one single large binder that would hold all documents.

It must be noted that the balance between the size of a sub-structure and the number of
structuring entities is important. The used structure types and the purpose also play an im-
portant role. For example, it is possible to hold 5,000 sheets of paper within a special binder.
However, this is not convenient to browse. We could split up the content of this binder into
10 binders, each containing 500 sheets. By doing this, we created a new structure level, as
described above. However, we also could use 100 binders that can hold 50 sheets each.

47

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 48 — #50 i
i

i
i

i
i

Chapter 2. Analysis

People have developed binding devices such as binders for different sizes. They support
various tasks. However, there is an upper bound above, which a binding would become
inconvenient for a particular situation. We assume that experience plays an important role in
deciding which binder to use.

2.2.4. Constraints and Emerging Metainformation

In the previous discussion, we mentioned aspects of limitations, and emerging behavior of
paper and real world bindings. We argue that those carry implicit metainformation that may be
helpful for finding information. The most obvious aspect of emerging behavior is sloppiness.

Figure 2.4 on page 37 as well as many other pictures of paper structures show sloppily
aligned stacks of papers. Perfectly shaped stacks would look unnatural in an actively used
work environment. Any document that is moved changes its angle, even if only slightly. We
argue on page 35 that time plays an important factor in evolving paper structures. Neatly
aligned stacks take longer to produce than sloppy ones. Office workers may be able to get an
idea of which stack was created in a hurry and which one was not. People perceive hastily
constructed piles differently from carefully constructed ones. This motivation has been also
discussed for differently looking icons in file system browsers (Lewis et al., 2004). Further-
more, caused by individual orientations or offsets, a sloppy pile exposes parts of its containing
documents to the recipient without being touched.

Other examples of emerging behavior are changing colors of documents or ink over time.
For instance, most white paper receives a yellow or brown tinge when reached by sunlight, or
some ink gets lighter. It can be assumed that most office workers have an understanding how
an old document looks. This is also demonstrated by “aging” book simulations on computers
(Chu et al., 2004, 85).

Similar to the aging process through sunlight, also other emerging changes may occur
through frequent usage. Documents that are often used accumulate soiling from the user’s
hands. This can be experienced even with document parts, for example, an often used page
within a book. Additionally, most books may be more likely open at the position of frequently
used pages. If a document is neither used nor cleaned frequently, dust may cover parts of it.
This also expresses that it has not been used recently.

As we describe in Sect. 2.2.2, we made the observation that location is an important implicit
indicator for frequently used or urgent documents. Britta puts those closer to her workspace
center, whereas documents that are to be archived are placed on the window ceiling or on
bookshelves. This indicates implicit metainformation about how frequently a document is
used.

This kind of implicit metainformation becomes automatically attached while a person uses
documents. They are based on behavior of the document, for example, the fact that paper
changes its color is based on chemical processes of the paper, or on behavior of its environ-
ment, for instance, dust falls onto documents over time.

Implicit metainformation is also supported by limitation. For instance, a binder has a cer-
tain capacity. A human would not expect much more than 600 or 700 pages within a binder
that has a spine of 8 cm. Humans also have world knowledge about binding combinations.
For example, office workers that are aware of books and binders know that a book with a
spine of 5 cm will not be put into a binder, even though it would fit according to its size. Most
offices do not have tools to punch holes into books of that size. Additionally, the binding
mechanism of most binders would not allow its addition.

48

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 49 — #51 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.12.: Screenshots of the Open The Book application – taken from http://www.nzdl.
org/html/open_the_book/demonstration.html (visited on 2006-03-18), used with
permission

Emerging metainformation and limitations play a role in understanding possible connec-
tions between documents. This may help office workers to exclude certain documents or
bindings, because their location or appearance does not fit the expected documents that they
are looking for. We discuss constraints and metainformation with the aspect of computer
applications further in Atzenbeck & Nürnberg (2005c).

2.3. Applications Based on Paper Metaphors

2.3.1. Paper Simulation

Overview

There are various research projects and spatial structure based applications that aim to sim-
ulate paper. They do this on different levels. Some projects aim to implement real objects
with very high detail in appearance and behavior. This requires a detailed observation and
description of the real world. Others take one ore more attributes they discovered in real life
and apply them to their application.

All of those approaches are metaphor-based. They implement appearance or behavior of
real objects, such as books or paper. Even though this is pushed to different levels of detail,
they all are still abstractions of what there exists in reality, and therefore there will be details
that are not implemented. This refers to our discussion in Sect. 2.2.1, where we argued
similarly about Malone’s description of paper structures in offices. We also will show that
most projects do not support emerging metainformation, as described in Sect. 2.2.4.

Highly Realistic Implementations

There are some applications that represent books with 3D look and feel highly realistically.
One of them is the 3Book (Card et al., 2004a,b), a prototype that aims to provide a realistic
look of books as well as realistic behavior. The process of turning a page is simulated. The
prototype offers additional features that are of less interest for our research effort, such as
multi-page comparison, bookmarks, and annotation.

49

http://www.nzdl.org/html/open_the_book/demonstration.html
http://www.nzdl.org/html/open_the_book/demonstration.html

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 50 — #52 i
i

i
i

i
i

Chapter 2. Analysis

Similar to 3Book, the Open The Book project (Chu et al., 2003, 2004) attempts also to
create realistic experience for reading books on a screen. Figure 2.12 shows screenshots. Chu
et al. (2003) state clearly the aesthetic aspect of real books:

“And beauty is functional: these books give their readers an experience that is
richer, more enlightening, more memorable, than the prosaic, utilitarian – often
plain ugly – web pages offered by today’s digital libraries.” (Chu et al., 2003,
186)

Various real world behavior are implemented: The user can click on a certain position of
the book’s edge and move the cursor. The book will open and the upper part will follow the
cursor. If the book is slightly more then half open, the book will fall down after releasing the
mouse button; otherwise, it will close. The same behavior is applied for turning single pages
or ranges of pages. Even though “[t]he model is over-simplified” (Chu et al., 2004, 80), it is
a first step of implementing gravity. There is a detailed visualization of how pages bend into
the spine. The rich implementation details are also demonstrated by “the spine[, that] even
bows slightly during the turning process to adjust to the pressure that the two covers exert on
it, just as a physical book does” (Chu et al., 2004, 80).

The most interesting aspect for us is the implementation of an “aging option”. It adds “dirt”
to pages that are accessed. The second image in Fig. 2.12 shows “dirty” pages. The more
often a page is accessed, the more dirt is represented. This gives the user an impression of
how often a book was accessed. We call this “emerging behavior”, as discussed in Sect. 2.2.4.

Paper Metaphor-Based Documents

Other projects do not aim to implement paper metaphors in great detail, but rather imple-
ment those on high abstraction levels. For example, applications that display PDF documents
(Adobe Systems, 2004) come in mind. As opposed to HTML (Raggett et al., 1999), “PDF
introduced the possibility of fast interactive reading and browsing because the formatting and
layout were pre-computed” (King, 2004, 95). Therefore, PDF supports fixed size “pages”,
that give the impression of digital “paper”.

This is useful in many areas, for example, projects in the field of augmented reality (AR).
“An AR system supplements the real world with virtual (computer-generated) objects that
appear to coexist in the same space as the real world” (Azuma et al., 2001). Examples of paper
metaphor-based augmented reality systems are DigitalDesk (Wellner, 1993) or the Escritoire
(Ashdown, 2004). They feature real desks on which digital documents are projected.

The left image in Fig. 2.13 depicts the Escritoire. It uses two projectors, one that targets
the complete desk, a second one that provides a higher resolution area right in front of the
user for better readability. The high resolution area can be experienced as having brighter
documents. The user has two pens used as input devices, used for different tasks, such as
moving or browsing stacks, or annotating documents.

The Escritoire supports also VNC (Virtual Network Computer), which allows to display
the screen output of any other computer running VNC as single “document” on the desk.
This includes window support with scrollbars inside the screen display. However, except for
VNC’s contents, all documents are of fixed size. There is support for bitmap images and PDF
files. The latter is rasterized before being displayed.

There is a generic implementation of piles. The right part in Fig. 2.13 depicts the repre-
sentations of two piles on the Escritoire. The left one has a north-west direction, that is when

50

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 51 — #53 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.13.: The Escritoire (left), a pile, and browsing a pile with marked pen position (right)
– picture taken from (Ashdown, 2004, Fig. 1.7), used with permission; pile
representations based on Ashdown (2004, Fig. 7.1)

there are increasing negative offsets of the documents behind others. Other possible direc-
tions are north-east, south-west, and south-east. All piles are well ordered and neatly aligned.
The offset is identical for all documents. Even the offset that is applied when browsing a pile
(as indicated at the second pile in Fig. 2.13) is identical for all moved documents.

A document gets added to a pile when there is at least an intersection of “60 per cent of
the area of the smallest item to be covered” (Ashdown, 2004, 107). The hard cut when a
document gets added to a pile is an abstraction of the real world. In reality, it depends on
various factors as to whether a document is seen to belong to a certain pile or not. This
include closeness of surrounding piles, sloppiness, or number of documents. Also textuality
criteria at the document level are considered, such as coherence (content belonging together?)
or cohesion (similar layout, color, size, or fonts?). This enables people to interpret that a paper
belongs “somehow” to a pile. This is impossible with the Escritoire’s pile implementation.

When piles are moved, the containing documents do not change their relative position or
offset. However, real piles would change when moved. Possibly it would just affect its overall
angle, but possibly also its shape, for example, when a messy pile is straightened in order to
be lifted more conveniently.

The Escritoire’s use of a paper metaphor is obvious. However, due to the high level of
abstraction, many of the discovered behavior of real paper (see Sect. 2.2.2 and 2.2.3) is not
supported. This results in less emerging metainformation than there would be otherwise.

Figure 2.14 shows two screenshots of an application that uses a camera to track documents
located on a desk (Kim et al., 2004a,b). As depicted at the left screenshot, the application
can then be used to search for documents by title or author, or to browse documents on the
document list, which appears on the left side of the application window. The position of a
selected document is marked on the virtual desk on the right side of the window.

This area depicts the documents as they are captured by the camera from the top. The red
surrounded document in the document list as well as at the desk area indicates that this is the
one that the user was looking for. In this case it is the result of an author search. The green
surrounded documents are those that have to be removed on the real desk in order to see the
requested document below. In the application they are moved slightly to the side in order to

51

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 52 — #54 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.14.: Video-Based Document Tracking; document query (left) and document drag-
ging (right) – taken from the demonstration movie Kim et al. (2004c)

G

G'

P'
P

Rotation Peeling back

P

P'

State 1

P

P'

State 2

g g g

Figure 2.15.: Rotation and peeling back in Beaudouin-Lafon (2001, based on Fig. 4)

provide a better view onto the found document.
The right window depicts a screenshot of a realistic desk view. It shows the same represen-

tation as the one at the application window on the left. Positions and orientation of the virtual
documents are equivalent to those on the real desk. The user can browse piles by dragging
individual documents. The still image looks realistically; however, moving documents does
not imply real world behavior, such as incidental rotation while being moved.

Improvements Toward Realistic Look and Feel

Other projects do not aim for completely realistic implementation of real world objects, such
as books, but rather try to improve existing elements of applications by adding some real
world behavior. For example, Beaudouin-Lafon (2001) aims to apply different novel interac-
tion techniques for overlapping windows, such as rotating or peeling back windows.

Rotation is applied to a window when it is dragged. The left part of Fig. 2.15 depicts how
it works: A window is dragged at position P to P′. The relative location of the mouse pointer

52

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 53 — #55 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.16.: Leaving through windows dragging an icon (approximated mouse path indi-
cated)

on the window stays the same during the complete action. The “center of gravity”, G, moves
to G′ with G, G′, and P′ aligned on an imaginary line g and a persistent distance between drag
point and “center of gravity”: PG = P′G′. Additionally, some constraints are applied, such
as the maximum rotation to avoid sideways or upside down rotations, or rotating back to an
upright position when a window’s rotation is less than 10 degrees, in order to provide better
readability.

A related idea in Beaudouin-Lafon (2001) is peeling back windows in order to see the
window behind. The right part of Fig. 2.15 shows how it works: The virtual line g goes
perpendicularly through the middle of segment [PP′]. The window gets split along g into
two quadrilaterals, in one special case possibly into two triangles. The part on which the
mouse button was pressed originally is reflected along the virtual line, S(g), as depicted. The
window can even be turned completely with this function. After releasing the mouse button,
the window moves back to its original position in an one-second animation.

Another project with focus on overlapping windows proposes a “fold-and-drop technique”
that allows leafing through windows while dragging an object (Dragicevic, 2004). Figure 2.16
depicts a screenshot with indicated mouse path. The mouse is dragging an icon while it
leaves through multiple windows. This project directly borrows from the previously described
peeling back function by Beaudouin-Lafon (2001).

We described on page 43 folding of physical documents for the purpose of structuring. This
is different to the above proposed technique, which does not consider folding as structuring,
but as the visualization of a temporary interaction.

Other projects aim to improve the desktop metaphor. For example, Mander et al. (1992)
were investigating and implementing (Rose et al., 1993) a pile metaphor for computers, which
became a U. S. patent by Apple Computer, Inc. (Mander et al., 1994) in 2001. Their work
was based on real world observations:

53

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 54 — #56 i
i

i
i

i
i

Chapter 2. Analysis

(a) (b) (c) (d)

Figure 2.17.: Pile metaphor for user created pile (a), pile with script attached (b), gesturing
a pile (c), and result of gesturing (d) by Mander et al. (1992, Fig. 1 and 4) –
c© 1992 ACM, Inc., used with permission

Figure 2.18.: Sequence of resizing and repositioning of windows with Exposé on Mac OS X
(duration approximately 0.23 s)

“Like Malone (Malone, 1983), we found that users like to group items spatially
and often prefer to deal with information by creating physical piles of paper,
rather than immediately categorizing it into specific folders. Computer users are
confronted with large amounts of information, but currently are only provided
with a hierarchical filing system for managing it.” (Mander et al., 1992, 627)

Figure 2.17 (a) depicts a user created pile. It appears disheveled. The neatness of the pile
at (b) indicates that there is a script or a set of rules behind it. A document can be put on on a
pile via drag and drop. It appears as the first document on the pile. However, the user cannot
rotate or straighten a pile. Every document representation has the same orientation. Mander
et al. (1992) uses well-defined semantics for neat and disheveled piles. The appearance as
well as its semantics are binary – there are no gradation or shades between them.

Further, they propose gestures to invoke certain actions on the pile, such as spreading
out a pile or browsing a pile’s documents individually. The first mentioned is depicted in
Fig. 2.17 (c) and (d), which shows the gesture and its result. The spread out thusly documents
can be manipulated individually. The way the documents are laid out reminds one of clusters
with overlays, as depicted in Fig. 2.6 on page 40. There are three major differences to the real
world, though. Firstly, there is no sloppiness. The document representations are perpendicu-
lar. Secondly, the depicted images are icons and therefore representations of the document,
but not the documents themselves. Thirdly, a document is represented as one single icon,
independently of how many “pages” it has.

We are not aware of any pile implementation in today’s major file system browsers or

54

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 55 — #57 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

desktop metaphors. However, Apple Computer, Inc. implemented Exposé7, a built-in feature
on Mac OS X since version 10.3, which acts similar to spreading out a pile of windows. When
activated, most8 visible windows on the screen start to move to a position where they do not
overlap with others. If necessary, they shrink proportionally, which gives the impression of
zooming out. Figure 2.18 depicts three screenshots that were taken during the transformation,
which lasts approximately 0.23 seconds in total. A click on a window will initiate the reverse
animation such that the windows move back to their original position, but the clicked window
will appear at the very front. It is also possible to apply this function exclusively to windows
of the frontmost application. A third feature pushes the windows of all applications outside
the desktop area. This gives the user direct access, for example, to icons on the desktop.

These actions can be invoked by keyboard, assigned mouse button, or an active corner on
the screen to which the mouse moves. Whereas the gesture in Mander et al. (1992) was to
move the mouse over a pile, imitating the movement of a hand over a real pile, as depicted in
Fig. 2.17 (c), the activation of Exposé features became more abstract and located “outside”
the area of the “windows pile” (keyboard, mouse buttons, or active corners).

Summary

We have shown that only some applications focus on the implementation of highly realistical
appearance or behavior. It is natural for projects that deal with real paper or digital documents
within a real environment (e. g., augmented reality) to used fixed sizes. However, even though
the appearance (size) is similar to real paper, its behavior is often reduced.

Many other developer of metaphor-based applications learned from real world observations
that they implemented in their applications. Even though the application uses a high abstract
level (e. g., windows or icons that symbolize documents), they support behavior that is known
from paper, such as folding or leaving through a pile of windows. However, the behavior is re-
stricted to interactions, but does not emerge during time or act unexpected, such as yellowing
paper or incidental rotation when moving.

We conclude that there are applications that have novel techniques implemented that is
reminiscent of real paper. However, only in rare cases is behavior implemented that supports
advanced emerging metainformation, as described in Sect. 2.2.4.

The next section takes a specific group of metaphor-based applications and analyzes them
in relation to the real world in more detail.

2.3.2. Spatial Hypertext Applications with Respect to the Real World

General

The following section analyzes a group of applications that follow a card-on-table metaphor
and are used for spatial knowledge structures: spatial hypertext applications. We will analyze
selected ones with respect to differences to the real world, as discussed in Sect. 2.2. We point
out questions that we discover during our comparison. Some of them will be raised directly
to become our hypotheses (Chap. 3). Parts of this section are published in Atzenbeck &
Nürnberg (2005b, 54–63).

7Information about Exposé can be found at http://www.apple.com/macosx/features/expose/ (visited on 2006-03-08).
8Some minor windows fade out, for example, the analog clock at the bottom right corner at the screenshots in

Fig. 2.18.

55

http://www.apple.com/macosx/features/expose/

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 56 — #58 i
i

i
i

i
i

Chapter 2. Analysis

Our Work in Context of Spatial Structure Supporting Applications

With this section, we aim to place our work in context of spatial hypertext or related areas.
We also point out those applications we use further for our analysis.

Aquanet (Marshall et al., 1991), the first so-called spatial hypertext application (Shipman
et al., 1995), contains a browser that lets users add or relate rectangular text objects spatially
or by using visual cues. The goal is to support rich structures and collaborative knowledge
work. Aquanet’s background can be found in NoteCards (Halasz, 1987), an associative hy-
pertext model based on a card metaphor, and gIBIS (Conklin & Begeman, 1987, 1988), an
argumentation support application. Both applications use spatial maps.

After Aquanet, VIKI was developed. It introduced “collections, a system-supported hier-
archy of navigable information spaces, and composites, higher-level structures composed of
regular spatial patterns of objects and collections” (Marshall et al., 1994, 13). Later, a fisheye
view was implemented (Shipman et al., 1999).

VIKI’s successor is VKB (Visual Knowledge Builder)9 (Gupton & Shipman, 2000; Ship-
man et al., 2001a). It enhances VIKI by extended visual attributes, easier interaction with
other applications, and improved structure recognition (Shipman et al., 2001b, 114), but does
not support fisheye views. We used VKB version 1.50, later version 2.00, as one of the main
applications for the following analysis.10 The implementation is written in Java.

A commercial spatial structure application is Tinderbox (Eastgate Systems, 2004; Bern-
stein, 2003).11 It supports different structure types on the same information synchronously
(Atzenbeck & Nürnberg, 2004; Atzenbeck et al., 2004). Basically, the types can be cate-
gorized as spatial structure (map view), hierarchy (chart, outline, tree map, explorer view),
navigational structure (HTML view), and linear sequence (Nakakoji view)12. Tinderbox sup-
ports agents that help to group information automatically. This feature as well as different
structure types (except the map view) are of minor interest for our investigations. Beside
VKB, Tinderbox version 2.2 is another application we used for the following analysis.13 The
application runs natively on Mac OS X.

2D views have been extended in three-dimensional spatial hypertext applications. Exam-
ples are Manufaktur (Mogensen & Grønbæk, 2000) and its successor Topos (Grønbæk et al.,
2002). This research branch developed toward “physical hypermedia” (Grønbæk et al., 2003),
which aims to interconnect physical and digital objects (e. g., by using RFID tags14 that allow
a machine to track their locations via a tag-reader).

Spatial hypertext applications have the advantage, that they appeal to the user’s visual
recognition and can be processed in parallel due to their visual representations. They reduce
the communication overhead and support quick problem solving (Shipman & Marshall, 1999,
2). However, a disadvantage of spatial structures is that the consistency of visual attributes

9See http://www.csdl.tamu.edu/VKB/ for the VKB project site, including free download (visited on 2006-03-10).
10Version 2.5 as of March, 2006 is the current version. Main improvements since version 2.00 were a metadata

applicator, MP3 audio preview, and spatial parser related changes. Those do not affect our analysis.
11See http://eastgate.com/Tinderbox/ for the project site, including a demo version download (visited on 2006-03-

10).
12Interoperability of spatial structure and linear sequences seems to be inspired by the work of Kumiyo Nakakoji

(Yamamoto et al., 2002a,b).
13The current version is 3.0.5. Most changes introduced since version 2.2 do not effect our analysis; otherwise, they

are explicitly mentioned. Main changes include new rules and actions for machine behavior, or performance
improvements.

14RFID stands for “radio frequency identifier”. Those tags can be detected by tag-readers (see Grønbæk et al., 2003).

56

http://www.csdl.tamu.edu/VKB/
http://eastgate.com/Tinderbox/

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 57 — #59 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

may not be given. Additionally, problems may occur if attributes cannot be interpreted cor-
rectly, for example, caused by different interpretations of author and recipient. For instance,
this may happen due to different connotations of colors or symbols among members of dif-
ferent cultural backgrounds (see also Russo & Boor, 1993).

Some spatial hypertext applications can parse spatial structures and recognize implicit asso-
ciations between objects. A spatial parser evaluates visual attributes and puts them in relation.
Francisco-Revilla & Shipman (2005) give an overview of different parser types used in spatial
hypermedia.

Examples for the use of a spatial parser are some of VKB’s agents, namely those that use
spatial analysis, for example, placement or relationship suggestions (Shipman et al., 2002,
30–31). The application presents suggestions to the users in order to help them in creating
structures. A spatial parser-based feature since VKB version 2.0 is the spatial structure shader.
It represents hierarchical structures that are expressed by alignment or color as transparent
gray rectangles in the background.

Another use case is the conversion of spatial structures into other structure types, as de-
scribed in Atzenbeck & Nürnberg (2004). Since we do not focus on computational structure
awareness, spatial parsers are not fundamental to our research. In fact, only a few spatial
hypertext applications offer a spatial parser; most of them do not (e. g., Tinderbox).

Beside spatial hypertext applications, there are also various applications available that may
be used for creating spatial structures, even though their main purpose may be different. We
will analyze OmniGraffle in the following sections and compare it to VKB or Tinderbox.
OmniGraffle is a commercial chart application for Mac OS X “to create everyday documents
like photo albums, yard sale flyers, CD covers, garden layouts, newsletters, and almost any-
thing else you can think of” (Omni Group, 2005, 2). It is obvious that the application domain
is desktop publishing rather than the creation of spatial knowledge structures. Additionally, as
opposed to spatial hypertext applications that follow a card-on-table metaphor, OmniGraffle
uses a canvas metaphor: the user can draw or modify graphical objects on canvases. Neverthe-
less, in the following we compare objects on canvases to card equivalents in spatial hypertext
applications and a canvas to the “table”. The “misuse” of OmniGraffle as “spatial hypertext
application” does not come out of the wild. A first test with OmniGraffle for this application
domain was successful.15 We use OmniGraffle Pro16 version 4.1.1, and will refer to it in the
following as “OmniGraffle”.

In the following sections, we analyze real world paper structures to comparable computer
applications, mainly to those presented above. The central question is: What can we learn
from how people use paper in order to improve spatial knowledge supporting applications?
Because our comparison focuses heavily on paper, we exclude parts that cannot be found in
the real world, such as search engines, agents, spatial parsers, or similar application-based
helpers from our analysis.

Figure 2.19 gives a first impression of differences between real world structures and spatial
hypertext applications. It depicts the result of a survey on how students use VKB for magnetic
poetry (Shipman et al., 2001a). In the following, we will refer to this figure when pointing
out differences in structure or behavior.

15We plan to extend our test and report our analysis and experiences in a future publication.
16There is a regular and a professional (“Pro”) version.

57

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 58 — #60 i
i

i
i

i
i

Chapter 2. Analysis

exact
alignment of

objects
possible

(potentially
via snap grid)

adding
scroll bars

moving an overlaid
object does not result in
moving its neighbors

large "desk"
size possible,
but only
partly visible

easy
changeable

attributes rotation not
possible

content >
paper size
possible

easy
resizable

shapes
exclusively
rectangular

easy to add
special signs

limited paper
size; text
sequence
has to be
continued on
an additional
2nd paper

sloppy
alignment

moving
affects

overlaying
objects

rotation (not
on purpose?)

3D and
shadow

rotation (on
purpose?)

objects not
resizable
(except when
cutting or
folding)

potentially
different
shapes

complete desk area
visible, but limited size

Figure 2.19.: Comparison of real world and spatial hypertext application – pictures taken from
Shipman et al. (2001a, Fig. 7 and 8); c© 2001 ACM, Inc., used with permission

58

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 59 — #61 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.20.: Rotation in OmniGraffle

Rotation and Sloppiness

As Fig. 2.19 depicts, none of the objects of the real world magnetic poetry are exactly aligned
horizontally. Some of the yellow sticky notes seem to be rotated on purpose; at least the
rotation angle is obviously larger than others. VKB or Tinderbox, however, have no support
for rotating objects. Nodes are positioned exclusively horizontally.

OmniGraffle allows rotation of any object, as depicted in Fig. 2.20. An object can be
rotated with the mouse while the command key is pressed or via the geometry inspector
window, which is also shown in the figure. The current angle is shown in a pop up window
during the rotation process.

Even though OmniGraffle supports rotation, the user is required to perform this explicitly.
In the real world, rotation angles mostly emerge while building a structure, as the magnetic
poetry picture demonstrates. On the other side, even intended rotation, as we assume for the
yellow sticky notes shown in Fig. 2.19, cannot be applied by VKB or Tinderbox.

The following questions regarding rotation arise:

• Would a person use rotation explicitly for spatial structures?

• Would incidental rotation in spatial structure applications, as it happens in the real
world, support the user in orientation or finding?

• Would rotation create more natural or aesthetic looking spatial structures?

• Would rotation seriously conflict with the bad resolution on screens (compared to print
media) and the fact that pixels are aligned in horizontal lines and vertical columns?
Would anti-aliasing solve this problem?

Rotation is partly responsible for sloppy-looking spatial structures. Beside sloppiness,
there are also x or y offsets of objects that represent the delta to the exact position, that is,
mostly the intended position. Many computer applications support the user in neat alignment

59

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 60 — #62 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.21.: Grid in VKB (left), and grid and grid inspector window in OmniGraffle (right)

Figure 2.22.: As stack aligned nodes in VKB (left), and alignment tools in VKB (center) and
OmniGraffle (right)

or positioning, for example, with a grid to which object snap to. However, most spatial real
world structures do not follow an exact grid. This causes, for example, piles that are not
aligned exactly, as depicted in Fig. 2.4 on page 37.

Most spatial structure supporting applications of the type we analyze have a grid feature
implemented. For instance, Tinderbox has an invisible grid of factor 0.125 of the default
height of a note,17 which cannot be switched off. Nodes snap to it on mouse release.

VKB has a fixed grid which can be switched on or off. It is represented on the background,
as depicted in Fig. 2.21. The screenshot in Fig. 2.19 does not have the grid switched on,
neither was it on during creation. This can be seen on slightly sloppily aligned nodes.

OmniGraffle supports an optional grid of arbitrary size. As shown in Fig. 2.21, it has
several additional visual features. Those include independent color selection for major and
minor grid,18 whether the grid should be painted in the front, or whether the grid should be
used for printer.

Many applications provide specialized tools for alignment support. Figure 2.22 depicts
those tools for VKB and OmniGraffle. VKB provides alignment functions for horizontal or
vertical alignment or distribution, but also for creating stacks. The left screenshot in Fig. 2.22
shows an example of a stack arrangement.

17This information was given by Mark Bernstein in a personal e-mail of 2004-05-06.
18The screenshot shows translucent blue for major and translucent orange for minor grid.

60

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 61 — #63 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.23.: Grid options in Tinderbox

The right screenshot depicts the OmniGraffle’s alignment inspector window. It provides
similar functionality than VKB. The alignment position (left, middle, right, and top, center,
bottom) can be selected by radio buttons. Additionally, the alignment can be relative to the
canvas. Horizontal or vertical distributions are possible. There is no “stack” function. How-
ever, there are two buttons on the right of the inspector window that place selected objects
horizontally or vertically according to the given distance. As the grid inspector window in
Fig. 2.21 depicts, OmniGraffle supports also aligning objects to the center or edges of the
grid.

Beside a grid, Tinderbox also supports grid related commands. They are provided via a
pop up list named “Cleanup”, next to the horizontal scrollbar. Figure 2.23 shows an example.
The first four entries place the nodes on grids of different types. The screenshot is an example
for “Cleanup to grid”. The remaining two entries nudge nodes in or out.

In the real world, alignment support exists partly. For example, loose paper on a desk can
be transformed into a stack easily by moving the hand over the table and collecting the paper
at once. However, the result will not look as perfectly aligned as it does in any of the computer
applications.

An interesting aspect can be raised by looking at the level of sloppiness from an aesthetic
point of view. (We want to raise this question without trying to give an answer.) On the one
hand, it seems that people tend to like aligned and symmetric spatial structures. The right
picture in Fig. 2.24 shows an example. Schloss Schönbrunn is a palace in Vienna, Austria.
It was built between 1692 and 1713 and altered in the 18th and 19th centuries (Wikipedia,
2006b). The picture shows the palace’s regular looking frontage. Groups of windows are
aligned neatly and share the same size or type. The architecture style seems “well organized”.

On the other hand, people like the Austrian architect and artist Friedensreich Hundert-
wasser follow a different idea. The left picture in Fig. 2.24 shows the “Grüne Zitadelle” in
Magdeburg, Germany. It was finished in 2005, five years after the architect’s death. It was
build mostly according to his plans. There are only some horizontally or vertically aligned
lines. The “sloppy look” of this building is also supported by differently shaped or sized
objects. For instance, there is a variety of windows with different shapes or sizes.

Both architectures, Schloss Schönbrunn as well as Hundertwasser buildings, have propo-

61

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 62 — #64 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.24.: Schloss Schönbrunn, Vienna, Austria (left),a and Grüne Zitadelle by Hundert-
wasser, Magdeburg, Germany (right)b

aThis picture has been taken by Alexander Umbricht on 2002-10-01. It is available at http://en.wikipedia.org/wiki/
Image:Wien_Schoenbrunn_Rueckseite.jpg (visited on 2006-03-06) and has been cropped for the purpose of this
thesis. The original has been released under the public domain.

bThis picture has been taken by Doris Antony on 2005-09-14. It is available at http://en.wikipedia.org/wiki/Image:
Magdeburg_Hundertwasserhaus.jpg (visited on 2006-03-31). Copyright c© 2005 Doris Antony, released under
the GFDL.

nents and are well recognized all over the world. Both are different in how “sloppy” they look.
This raises the question about whether people feel more comfortable with sloppy or straight
looking buildings and whether this can be addressed for paper structures as well. This may
be also a matter of different times or cultures.

In a personal e-mail, Mark Bernstein, chief scientist of Eastgate Systems, told us that Tin-
derbox’s grid was implemented, because “people like to have things line up neatly”19. This
would be a contradiction to what Hundertwasser was doing, if architecture and knowledge
representation domains are comparable in this matter.

The following questions about sloppiness can be risen:

• Would grids change the development of structures?

• What kind of implicit metainformation would structures contain that were built with
grid or alignment support in comparison to structures that were built without?

• Would finding or recognition be supported by spatial structures that were built without
grid or alignment support?

• What would be the subjective satisfaction of people working with sloppy spatial struc-
tures versus those working with neat looking ones?

3D and Physical Forces

None of the analyzed applications support true 3D. However, Tinderbox and OmniGraffle
offer visual cues to give the impression of depths. As depicted in Fig. 2.25, Tinderbox draws
nodes with a three-dimensional look. However, this is just a fixed visual cue on all nodes
without additional semantics.
19E-mail of 2004-05-06.

62

http://en.wikipedia.org/wiki/Image:Wien_Schoenbrunn_Rueckseite.jpg
http://en.wikipedia.org/wiki/Image:Wien_Schoenbrunn_Rueckseite.jpg
http://en.wikipedia.org/wiki/Image:Magdeburg_Hundertwasserhaus.jpg
http://en.wikipedia.org/wiki/Image:Magdeburg_Hundertwasserhaus.jpg

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 63 — #65 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.25.: Node representations in Tinderbox

Different shadow projections
Accumulating

shadows Shadow fuzziness
Arbitrary shadow
position and color

Object A

Object B Object C

Figure 2.26.: Shadow attributes in OmniGraffle

OmniGraffle supports optional shadows to indicate a third dimension. There are different
attributes available for shadows. Figure 2.26 depicts some examples. The left example shows
different shadow projections. Object B is set to display its shadow immediately beneath itself,
whereas object C displays it behind all object of the same layer. Therefore, C’s shadow is
not visible on top of object A. This can be used to indicate a distance between two objects,
for example, object C seems to touch A, whereas B does not. The second example shows
that overlaying shadows accumulate in intensity. The area where many shadows are projected
appears darker. This gives an impression of how many objects there are. The remaining
two examples depict different attributes in shadow fuzziness, color, or position. This may be
useful if additional visual attributes are required.

Several yellow sticky notes shown at the magnetic poetry example in Fig. 2.19 do not stick
flatly on the board. They are curved toward the recipient. This may be not intended in this
case; however, we have experienced that some people use this as a visual cue to indicate
an important spot. One example are dog eared pages. They help the user to find a page
easier through its different shape. None of the observed applications allow something similar.
Also none of the 3D spatial hypertext applications mentioned on page 56 support this kind of
marking. However, work is done in the past on simulating dog ears in computer applications
(Hoeben & Stappers, 2000).

Physical forces, such as gravity, friction, or inertia play an active role in structure creation
or modification, for example, overlapping nodes: The magnetic poetry shown in Fig. 2.19
has the word “milk” at the lower part of the picture partly on top of a yellow sticky note.
Removing the sticky note results in some movement of the “milk” object. If an object, for
example, an ISO A6 paper is completely on top of an ISO A4 paper, slow movement of the
A4 paper will also move the A6 paper.

Tinderbox and VKB do not offer similar behavior. OmniGraffle has a grouping function,
which lets the user group objects on the same layer. Movement or alignment functions will be
applied to the group as a whole. However, this only reflects some aspects of the described real

63

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 64 — #66 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.27.: VKB’s context menu for nodes

world behavior. The user needs to group items explicitly, whereas it happens automatically
in the real world. We are not aware of any knowledge management application capable of
simulating gravity, friction, or inertia.

This raises the following questions:

• How would structures evolve when gravity, friction, or inertia are simulated?

• How would users interact with spatial structure environments that would simulate forces
known from the real world?

Shape and Size

Office workers use mostly rectangular shaped paper. Similarly, VKB as well as Tinderbox
provide only rectangular nodes. However, external graphics may be included that show other
shapes. OmniGraffle is the only application among the analyzed ones that allows to create
arbitrary shapes.

Size is another important difference. As argued in Sect. 2.2.2, the used paper size mostly
relates to standards and remains unchanged, for example, through cutting the paper. Once a
paper is cut, it is difficult to extend it again without any remaining damage. All three observed
computer applications, however, allow to resize objects without “damage”.

Figure 2.19 shows two yellow sticky notes at the lower right corner of the magnet poetry
picture that are put together. Apparently, the content did not fit one single paper and had to be
extended on a second one, which was placed below the first one. The VKB screenshot at the
same figure depicts some equivalent nodes. Also here, the text exceeds the visible size of the
node. However, a closer look shows that the node acts similar to a window, which displays
the text only partly. The user is able to scroll the text using the text cursor. Alternatively,
resizing the node will cause more text to be visible. VKB also supports scrollbars, automatic
sizing, or line wrap. These functions can be switched on or off individually for each node at
any time through the context menu, as depicted in Fig. 2.27.

64

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 65 — #67 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.28.: Node with heading in map view and its content in Tinderbox

Figure 2.29.: Nodes with different attributes and note inspector in OmniGraffle

Tinderbox’s map view, represents only the node’s heading. Text as much as possible is
displayed on a node, the rest is hidden. Since version 2.5.0, there are menu commands that
let a node expand horizontally or vertically until the complete text is visible. Users cannot
scroll headings as they can do with VKB. A heading can be edited via a dialog window. This
differs to VKB or OmniGraffle, which edit the text directly at the node. Tinderbox supports
a text body beside the heading. As mentioned above, it will not be displayed at the map
view; however, it can be used either in a separate window or be exported in another format,
for example, HTML. The spatial representation of a node with long heading and its content
window is shown in Fig. 2.28. The small dog ear symbol at the right bottom corner indicates
the existence of a text body.

OmniGraffle supports three modes for objects to handle long texts. Figure 2.29 gives an
example for each mode. The rectangles represent the nodes’ bounds. The left example con-
tinues drawing the text over the node’s bound. The second node cuts the text. The last one
adjusts the node’s height automatically according to how much space is needed to display the
text completely. Alternatively, the user can set the side or top/bottom margin to adjust the
space between text and node bounds.

Similar to Tinderbox, OmniGraffle allows the attachment of a note to any object by using
the note inspector. Figure 2.29 depicts the inspector. Additionally, the note appears as tooltip
next to the cursor when moved over an object. A blue icon on the node’s top right corner
indicates the existence of a note.

The previous discussion leads to the following questions:

• What would be users’ subjective satisfaction, if only some fixed node sizes or shapes
would be available?

65

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 66 — #68 i
i

i
i

i
i

Chapter 2. Analysis

• What would be users’ subjective satisfaction, if the size or shape of an object could not
be changed after creation?

• What problems or advantages would be experienced, if the amount of content of a node
would depend strongly on its size, similar to real paper?

Desk Size

There is a significant difference between the real world and the observed computer applica-
tions with respect to the desk size. A real desk is very limited in space compared to simulated
space in computer applications. It can be argued that the desk space may be extended, for ex-
ample, by putting paper on the floor or in shelves, but this is only a small extension. Tinderbox
and OmniGraffle exceed this size significantly.20 According to a personal conversation21 with
Mark Bernstein, Tinderbox uses 16 bit (possibly even 32 bit)22 in each direction to store the
offset of an object. 16 bit would be 65,536 pixels, which is equivalent to over 23 m×23 m on
a screen with 72 dpi resolution. 32 bit would result in over 1,515 km×1,515 km. According
to our tests, OmniGraffle is limited to a maximum canvas size of 3,527.8 km× 3,527.8 km,
independent of scaling. This is an area larger than the USA or Canada.

These examples show that the possible virtual desk size is much larger than a real desk
possibly can be. All analyzed applications have horizontal and vertical scrollbars to navigate.
In addition to that, they support panning the background via mouse.23 However, large spaces
do not force an office worker to clean up the desk before placing other documents. This is
different to the real world, where someone has to clean up from time to time in order to gain
vacant space. Frequent reorganizing or restructuring is necessary, as discussed on page 37.

Some questions come in mind:

• How would users structure spatially, if space would be limited?

• How would spatial structuring change, if output or input devices would be more natural,
for example, large touchscreens or projection on a desk? – As discussed in Sect. 2.3.1,
there is research done on using digital documents on a physical desk (e. g., Wellner,
1993; Ashdown, 2004). However, we are not aware of any analysis of the thusly created
spatial structures in real work environments.

Collection Objects

A collection object follows the metaphor of a drawer or box in which the user may put objects.
The “box” may be located on the same space than other nodes. Collection objects also can
be seen as hierarchically ordered sub-spaces. OmniGraffle does not provide this kind of sub-
spaces. However, it supports linear ordered canvases, that are, spaces on which objects can
be placed.

20Currently, we do not know the maximum size of a VKB space.
21Conversation of 2004-05-07.
22Mark Bernstein was uncertain about the exact number.
23In VKB, the command key has to be pressed. In Tinderbox, panning does not require any additional key stroke.

OmniGraffle has a tool for panning, which can be activated, for example, by pressing the space bar.

66

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 67 — #69 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

sub-space

Figure 2.30.: Representation of a collection object as hole; bird view with transparent spaces
(left) and top view (right)

A more appropriate metaphorical interpretation would see collection objects on 2D spaces
as “holes” that lead to sub-spaces, as depicted in Fig. 2.30. Sub-spaces of all analyzed spatial
hypertext applications do not show specific constraints. Therefore, they can be seen as as par-
allel spaces underneath the current one. However, a metaphor break occurs when collection
objects are moved. In the real world, a hole in a solid material cannot be moved. Furthermore,
moving the “hole” results also in moving the complete space underneath.

VKB supports collections. An example is shown in Fig. 2.19. The collection object looks
as an additional window. They are different to text nodes. The depicted one has a different
background than the main window and a title. The scrollbars indicate that the sub-space is
larger than the visible area. However, they also can be switched off. There are functions to
scale the content of collection objects in VKB.

In Tinderbox, any node may serve as collection object. The first image of Fig. 2.32 on
page 70 depicts a node which contains other nodes. Similar to VKB, it has a single line with
the node’s title and shows a part of its sub-space. However, this part is downscaled. The size
of this “preview” area can be changed at any time by resizing the collecting node. The last
image of Fig. 2.32 depicts the inside of the collection object. The size of the containing node
is indicated as a frame on the background.

In the real world, people use drawers, boxes, etc., to collect objects. Such collection fa-
cilities have bounds. They have roughly the same dimensions, both inside and outside. In
comparison, a VKB or Tinderbox collection may contain a larger space inside than is visible
at the outside. The limitation in the real world forces reorganization whenever a container
becomes too small for its content. A potential advantage would be that a person has an un-
derstanding of a drawer’s possible contents by number or size. Spatial hypertext applications
do not provide information about the size of a collection. Even collections inside collections
are possible.

Collection related questions are:

• Would containers with limited space support the user? If yes, how?

• How would structuring change, if only non-resizable collection objects would be avail-
able?

67

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 68 — #70 i
i

i
i

i
i

Chapter 2. Analysis

Focus–Context

Changing focus and context affects structure creation, but is not part of the structure itself.
We experienced the importance of related interactions while comparing human interactions
with paper and spatial hypertext applications.

This discussion refers to the levels of structure, or “scales” (Ware, 2004, 339), as we have
explained in Sect. 1.2.2. Ware (2004, 340–344) distinguishes between four different tech-
niques that solve the focus–context problem, that is, how to jump between different scales or
levels of structures: Distortion techniques distort the map to provide more room at where the
focus is. One example are hyperbolic trees (Lamping et al., 1995). Elision techniques hide
structure parts until they are needed. For example, the graphical representation of a large
structure collapses into a single object when not needed. The object still would be placed
on (or in) the space; however, it would not reveal its internal structure. Examples include
generalized fisheye views (Furnas, 1986), that are used to hide details the further the focus
moves away. A third possibility to support focus–context changes in applications are multiple
windows. They can be used to display different views on the same space. Finally, there are
rapid zooming techniques:

“In rapid zooming techniques, a large information landscape is provided, al-
though only a part of it is visible in the viewing window at any instant. The
user is given the ability to zoom rapidly into and out of points of interest, which
means that although focus and context are not simultaneously available, the user
can move rapidly and smoothly from focus to context and back.” (Ware, 2004,
342)

“It is worth noting that the focus–context problem has already been solved by the human
visual system” Ware (2004, 339). Human sight depends on the visual field. Humans do not
perceive anything visual outside. Additionally, “[t]he acuity of the eye falls off rapidly with
distance from the fovea” (Ware, 2004, 51). This means in analogy to computer monitors,
that there is a higher resolution and more details in the center of the focus; Ware (2004,
52) mentions “brain pixels” in analogy to pixels on the screen. It becomes blurry toward the
outside of the visual field. This reminds one strongly on elision techniques, that hide structure
parts, or distortion techniques, that have a higher resolution and greater details at the center
of focus.

Compared to the capabilities of humans in real world environments, the focus–context
support in most of today’s computer applications is poor. We will discuss related features of
the analyzed applications in the following.

All of them support basic zooming; however, no rapid zooming is provided. VKB has three
different zoom relevant entries in its menu, as shown in Fig. 2.31: 125 %, 80 %, and 100 %.
The first two mentioned are relative to the current scale, the last one resets to 100 % absolute.
Alternatively, the scale factor may be set arbitrarily via a dialog window.

Tinderbox has pop up lists at map view windows with zoom levels from −4 to 4. The
middle position is called “Normal”. Similar to Tinderbox, OmniGraffle has a zoom pop up
menu on any window available. It shows basic zoom scales in percentage, which can be
selected by one click. The menu also allows to enter an arbitrary zoom factor manually, up to
800 %. Another menu entry selects a zoom level such that the complete content of the canvas
is visible. OmniGraffle maps the mouse wheel to zoom in or out. However, a large number of

68

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 69 — #71 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

Figure 2.31.: Zoom functions and floating miniature workspace window in VKB

objects heavily affects zooming performance. Depending on the used hardware, efficient and
smooth zooming may not work smooth in those cases.

Figure 2.31 depicts VKB’s floating miniature workspace window, which gives an overview
of the complete workspace. The user can imitate a quick “zoom out” by changing the eye
focus from the normal window to the overview map. The red border on the mini map indicates
the viewport at the main window. It can be used for navigation by dragging it with the mouse.

Tinderbox allows users to have a maximum of two map windows of the same parent (i. e.,
space) open at the same time. Both views represent the same set of data, but are independent
in scale or location from each other.

OmniGraffle supports unlimited views on the same document, represented in individual
windows. Similar to Tinderbox, they may vary in size, viewport, or scale. For example, this
can be used to have three windows open, one scaled to 100 %, another one to 50 %, and the
third one set to automatically keeping the complete content of the canvas visible. Users can
change their focus from one window to another. Unlike the mini map in VKB, OmniGraffle’s
alternate windows are identical in functionality. Objects can be modified at any of them.
Changes are updated immediately on all windows. On the other hand, a window cannot be
used to navigate the view of another one. Similar to VKB and Tinderbox, OmniGraffle’s
feature allows switching quickly between different levels of detail.

Overview maps may be beneficial if efficient zooming interactions are missing. How-
ever, there is evidence that for zooming-enabled applications an additional overview map
may cause slower performances for finding (Hornbæk et al., 2002).

We are only aware of one publication within the spatial hypertext research field that ex-
plicitly deals with focus–context: Shipman et al. (1999) describe the implementation of a
multiple fisheye view for VIKI. VIKI’s successor VKB does not have fisheye views imple-
mented. The lack of usability tests, however, still leaves the motivation for and advantages of

69

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 70 — #72 i
i

i
i

i
i

Chapter 2. Analysis

Figure 2.32.: Sequence of zooming into an object in Tinderbox (five different zoom steps
visible in total, duration approximately 0.3 s)

multiple fisheye views for spatial hypertext in the dark.
We believe that rapid zooming is the most natural focus–context supporting technique in

combination with human perception among the above discussed. The reason is obvious:
The human eye scans constantly different parts of the monitor. It does not stay at a specific
location on the screen. As discussed above, the human eye has its own focus and views the
part outside blurry. Distortions or elision views on the screen could not be updated as the eye
moves. Therefore, both the rendered and the eye focus could be in contradiction.

Zooming, however, provides a plain view with no distortion. Users may focus any point
of a displayed scale at any time. Their eyes focus on the desired spot, whereas the context
becomes blurry. This is based on the eye’s anatomy, not on machine rendering. The zooming
action itself simulates a change of the area that intersects with the visual field, without having
the person to move. It could be mentioned that a screen is limited in size and therefore does
not provide the same amount of context that would exist in the real world. In this respect,
huge screens in high resolution that are close to the user would support this idea better.

There are research projects on efficient zooming. Examples include zooming for image
browsing (Combs & Bederson, 1999), more recently also image browsing on PDA devices
(Khella & Bederson, 2004), a zooming browser for hierarchically clustered documents (Toy-
oda & Shibayama, 2000), or a presentation application with zooming support (Good & Bed-
erson, 2002). However, the zooming functions in many applications that are primarily used
for spatial knowledge structures, such as spatial hypertext, are not satisfying compared to the
real world. As described above, mostly their commands activate explicit scale factors. For
instance, the user has to state that the application should zoom to 150 %. More realistic be-
havior would be to zoom in or out “some more”, without thinking about the scale factor. Of
the analyzed applications, the one closest to the real world in zooming is OmniGraffle, when
using the mouse wheel for zooming.

Some applications provide the visual impression of rapid zooming. For instance, Tinderbox
shows an animated “moving into a node”. Figure 2.32 depicts the sequence as pictures. The
duration and the number of visible zoom steps depend on the window size, the processor
speed, and the number of items at the destination space. The depicted example an animation
with five different zoom steps visible. The duration of the whole process was approximately
0.3 seconds.

Even though the visualization appears smooth, it cannot be stopped. It shows a node as
start state and the node’s sub-space as end state. It is not possible to stop in between or

70

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 71 — #73 i
i

i
i

i
i

2.3. Applications Based on Paper Metaphors

have a node’s content side by side to objects at other structure levels, as it can be the case in
the real world. Therefore, the user looses the context when entering a sub-space. However,
the animation may help to provide a better understanding of the spatial change or the spatial
relation of collection node and its space.

This discussion leads to the following questions:

• How would knowledge workers make use of rapid zooming in spatial hypertext appli-
cations?

• Would rapid zooming change the way spatial structures are created?

• How would knowledge workers make use of rapid zooming for finding information in
spatial knowledge structures?

Summary

We have shown that the analyzed applications reduce limitations beyond what is known from
the real world. This includes emerging sloppiness, physical forces, or maximum available
space size (including sub-spaces, i. e., collection objects). Reducing limitations result in
higher freedom. However, it also leads toward more complexity within structure levels. We
raised questions that asked about the benefits of limitation reducing behavior that is based on
what users know from the real world.

Whereas in most observed cases, applications aim to avoid limitations by breaking their
metaphors, focus–context changes are different. Human perception is based on a highly de-
veloped system. Focus and context can be changed rapidly. This is different in most of today’s
applications. The analyzed ones provide only basic support for that.

In the next chapter, we formulate our hypotheses. They are based on this analysis.

71

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 72 — #74 i
i

i
i

i
i

Chapter 2. Analysis

72

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 73 — #75 i
i

i
i

i
i

Chapter 3.

Hypotheses

„Das Ganze ist ein riesiger Mist-
haufen, der Perlen enthält. Aber
um Perlen zu finden, muss man
die richtigen Fragen stellen. Ge-
rade das können die meisten
Menschen nicht.“

(Joseph Weizenbaum about the
Internet, May 2005)

3.1. Remarks

We analyzed real world paper structures in Sect. 2.2 and compared some aspects to selected
spatial structure supporting applications in Sect. 2.3. In Sect. 2.3.2, we discussed especially
constraints as well as focus–context support, and pointed out specific questions after each
section.

We argued that even though the analyzed applications follow paper-related metaphors, they
have fewer constraints than the real world. We pointed especially to emerging sloppiness,
physical forces, and maximum available space. On the other side, we argued that changes in
focus or context are more efficient for the humans than current computer implementation. We
further mentioned that we believe zooming (in combination with human perception) is the
most natural among several discussed ones.

In the following, we define our hypotheses. They are based on selected questions that
have been raised in the previous chapter, and summarized in Tab. 3.1. The table head shows
abbreviations that stands for applications with one extended feature each.1 Those are:

1The abbreviation is also used in Chap. 4 and 5 to refer to versions of our prototype, including v4 , which supports

Test v1 v2 v3 Focus

Time for organizing H H 2 time used
Time for finding N H H time used
Occupied area H 2 2 occupied area
Zoom usage H – 2 activation count
Subjective satisfaction N users’ rating

H = significantly less; N = significantly more;
2 = no obvious tendency; – = not part of comparison

Table 3.1.: Summary of our assumptions

73

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 74 — #76 i
i

i
i

i
i

Chapter 3. Hypotheses

1. Variable document sizes (v1)

2. Extended zooming (v2)

3. Rotation and sloppiness (v3)

We describe the application which we coded for our usability test in Chap. 4 and report the
test design and statistical evaluation in Chap. 5. A summary overview of the statistical results
can be found in Tab. 5.4 on page 208.

3.2. Hypotheses Phrasing

3.2.1. Variable Document Sizes (v1)

Computer applications have little constraints in object sizes, whereas text on paper is limited
to the paper’s size. Nodes in spatial hypertext applications can be resized; paper can not. We
argue that it may be a disadvantage for users to have object sizes independent of the amount
of text they carry. Opposed to real paper, users cannot judge the amount of text, if no other
representation of this information is given. Scrolling text or resizing nodes becomes essential.

We expect users of variable size documents to be significantly slower in finding information
than those with fixed size documents of ISO A4 size. However, because of the initial small
document size we expect variable size documents to lead to shorter organization times for
organizing a stack of documents compared to fixed size version.

We further assume that users would occupy less space with variable size than with fixed size
documents. Because of a smaller occupied area, we assume that users will not or significantly
less often use zooming than with a fixed size version.

3.2.2. Extended Zooming (v2)

Zooming is provided by all applications we analyzed in Chap. 2. However, none of those are
close to what we experienced with the human capability of changing focus. We investigate in
two kinds of rapid zooming: smooth zooming and quickzoom.

Smooth zooming is a feature that enables users to zoom in or out seamlessly without pre-
defined zoom steps. This simulates the human eye in respect of getting closer or further away,
or stop at any level.

Quickzoom simulates the behavior of users who sit on a desk reading. When they want to
look for another document, they leans back to get an overview of the complete desk. After
the desired document is found, they leans forward again and focus on its content. Quickzoom
is a fast way of zooming out completely and zooming back to where the mouse cursor points
to. Both, zooming in and out, are animated and give an understanding of where the focus is
brought to.

We claim that extended zooming enables users to organize or find information more quickly,
compared to a version without smooth zooming or quickzoom. We do not expect larger oc-
cupied areas.

Additionally, we expect that the user’s subjective satisfaction will be higher with smooth
zooming or quickzoom enabled.

fixed size documents.

74

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 75 — #77 i
i

i
i

i
i

3.2. Hypotheses Phrasing

3.2.3. Rotation (v3)

Rotation is an obvious property of paper structures, except for the content of certain bind-
ings, such as books. However, our analysis has shown that many applications do not support
rotation, but instead often support tools for eliminating sloppiness in spatial structures. As de-
scribed in Sect. 2.2.2, sloppily aligned documents may provide information about documents
located behind them. They also give some impression about how many documents there are.

Additionally, individually rotated or pulled-out documents may be used to mark specific
locations within a structure, for example, a document that is pulled-out of a pile.

We argue that rotation or sloppiness, both purposeful or automatically applied by the sys-
tem during structuring, help the user to remember or recognize locations and therefore support
quick finding. We expect significantly shorter times for finding information, compared to a
version without.

We do not expect any significant difference in time for organizing a pile of documents,
because we assume that most users will organize document by document from top to bottom,
which would not be affected by sloppiness in most cases. Even though users may receive
a better understanding in how many documents the pile has, we do not assume that to be
beneficial for the organization time.

We assume that the size of the occupied area is in relation to the frequency of zooming in
and out. Sloppy piles occupy a larger area than neat ones, but we do not expect significance
for the total space occupied. Therefore, we expect a similar number of zooming in or out
compared to versions without rotation.

75

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 76 — #78 i
i

i
i

i
i

Chapter 3. Hypotheses

76

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 77 — #79 i
i

i
i

i
i

Part II.

Implementation and Evaluation

77

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 78 — #80 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 79 — #81 i
i

i
i

i
i

Chapter 4.

Application Design and Implementation

“I liked zooming in and zooming
out. It was almost like a real desk
where you can look around.”

(Participant s31 about WildDocs)

4.1. General

4.1.1. Overview

In this chapter we discuss the implementation of WildDocs, our prototype that we use for
testing our hypotheses. The name WildDocs is an abbreviation of “wild documents” and
comes from the fact that it supports emerging sloppiness among other features; this causes
sloppy looking spatial structures that look rather “wild”.

Due to the nature of our analysis we focus on a high level of details. This leads to a detailed
discussion of our prototype. The goal is to create an application that is capable of testing the
effects of simulating real world properties for organizing and finding information on a 2D
space.

This section discusses the general WildDocs base implementation. Section 4.2 continues
with presenting the implementation of documents. Our goal was to provide support for Wild-
Docs behavior in separate classes, which are member of the package machines. We discuss
those in Sect. 4.3. Finally, Sect. 4.4 focuses on handling user interactions and Sect. 4.5 con-
cludes this chapter with miscellaneous code.

The discussed implementation is based on WildDocs v20050919, as of September 19,
2005. We developed the prototype on Mac OS X. Mainly because Java 5 was not avail-
able for this system at that time, we started with Java 1.4.2 and stayed with it. However, the
application compiles and runs also on Java 5 environments. We used Eclipse 3. The code
base contains 13,917 lines of code in 68 Java classes. A list of classes grouped by packages
can be found in Tab. 4.1.

We use Piccolo 1.1 for Java as the main underlying framework for WildDocs.1 Piccolo
provides support for 2D spaces, including zooming (Bederson et al., 2004). The core classes
in Piccolo are specializations of PNode, generally called “nodes”. Figure 4.1 depicts their
relation. PRoot is the root node of the Piccolo tree. PLayer and PCamera are classes that
are necessary to build a scene graph. A camera looks at a layer. Multiple cameras, also on
the same layer, are possible. Nodes that should appear on the screen are added directly or
indirectly to a layer that is looked at by a camera.

1Piccolo’s current version for Java is 1.2 as of 2005-12-06.

79

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 80 — #82 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

de.atzenbeck.wilddocs
WDBoundsHandle WDDeskInputEventHandler WDNodeInputEventHandler
WDCanvas WDLayer WDZoomEventHandler
WDDeskImitation WDMainMenu WildDocs

de.atzenbeck.wilddocs.comparators
WDIndexComparator

de.atzenbeck.wilddocs.documents
WDDocument

de.atzenbeck.wilddocs.documents.adornments
WDAdornment WDShadow
WDLowLevelDocBorder WDShadowSurrounding

de.atzenbeck.wilddocs.documents.bindings
WDBinding WDDesk WDPrimitiveBinding
WDBook WDPage WDSheet

de.atzenbeck.wilddocs.documents.bindings.mechanisms
WDBindingAreaMechanism WDBindingPointMechanism WDPageMechanism
WDBindingLineMechanism WDBookMechanism WDSheetMechanism
WDBindingMechanism WDDeskMechanism

de.atzenbeck.wilddocs.documents.lowLevel
WDBindingCover WDLowLevelDoc WDStyledText
WDImage WDShape WDText

de.atzenbeck.wilddocs.filters
AdornmentFilter IntersectionFilter OpenBindingMechanismFilter
BindingMechanismFilter LargerNodeIndexFilter PrimitiveBindingFilter
ChildrenFilter LowLevelDocFilter ShadowFilter
ClusterOnTopFilter NodeInBetween SmallerNodeIndexFilter
DescendentFilter NodesOnLayer WDFilter
DocumentFilter

de.atzenbeck.wilddocs.machines
WDBindingClipCalculator WDNodeDragger WDNodeRotator
WDClusterRecognizer WDNodeFactory WDUnitConverter
WDDocTurner WDNodeIndexPusher

de.atzenbeck.wilddocs.storages
ObjectStore WDObjectStore WDTempNodeStorage

de.atzenbeck.wilddocs.util
FileChooser WDRotationPoint WDTextLoader
WDBox WDRubberBand WDTextSaver

Table 4.1.: WildDocs packages and classes

80

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 81 — #83 i
i

i
i

i
i

4.1. General

edu.umd.cs.piccolo.nodes edu.umd.cs.piccolo
edu.umd.cs
.piccolox.nodes

PText PPath PImage

PNode

PRoot PLayer PCamera
1..n

PStyledText

Figure 4.1.: Overview of Piccolo core classes (based on Bederson et al., 2004, Fig. 9) and
class for styled text support

Machines Documents

Comparators

Filters

StoragesUtilities WildDocs

Figure 4.2.: WildDocs packages overview

Piccolo also supports WildDocs with basic nodes for text (PText and PStyledText), images
(PImage), and generic lines (PPath). The term “node” is mostly not used in WildDocs, for
which we built a terminology that is based on names of real items, such as book, page, or
document. However, in this chapter we will use “node” for all instances where the focus is
rather on the Piccolo based coding than on the WildDocs concept.

Figure 4.2 shows the logical WildDocs packages and how they relate to each other. The
package “WildDocs” (de.atzenbeck.wilddocs) contains classes for managing the space and
interaction related tasks. We discuss those in various sections, mainly in Sect. 4.1.2–4.1.4
and 4.4. The WildDocs space supports documents to be placed. They are part of the pack-
age “Documents” (documents), presented in Sect. 4.2. The “Machines” package (machines)
takes care of behavior that is applied to documents, such as incidental rotation, offset, or
unit conversion. We explain those in detail in Sect. 4.3. “Comparators” (comparators) and
“Filters” (filters), discussed in Sect. 4.5, are built for node comparisons and filtering. The
package “Storages” (storages) holds classes for saving and loading documents persistently
or temporarily, as shown in Sect. 4.5.3. Finally, “Utilities” (util) provides additional tools for
WildDocs, which we present in Sect. 4.4.3 and 4.5.

4.1.2. Main Class

WildDocs’s main class is WildDocs. With its 1,910 lines of code it is the largest class among
all other WildDocs classes. It extends Piccolo’s class PFrame. In order to provide a better

81

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 82 — #84 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

overview, we divided the code into several parts, which we will describe in the following
sections.

Constants, Preference Switches, and Preference Values

Line 96–307 contain preference switches and values, as well as other constants. At the current
version, preferences can be set via static variables. They allow configuration of new WildDocs
instances. For a later version, those preferences should be moved to a preference window that
allows the user to change and activate them during runtime.

We distinguish between preference switches (which can hold either ON or OFF) and pref-
erence values (which can hold any value or object). Table 4.2 lists all preference switches.
They are divided into five groups, which we will describe in the following. Preference values
hold mainly visual attributes, such as shadow transparency, offset, or color, but also menu
zoom factors, grid spacing, or desk size. They are of less interest, because they do not add
main features, but rather modify the appearance. We will not focus on them.

Zooming and Navigation Preferences Switches for zooming include smooth zooming,
menu zoom, and quickzoom. Additionally, keyboard shortcuts for menu zoom can be switched
on or off as well as whether there should be a mark for the departure area when quickzoom
fully zooms out. Also scrollbars can be enabled or disabled.

Rotation and Sloppiness Preferences Rotation and sloppiness preferences allow to switch
on or off purposeful rotation, incidental rotation (named RANDOM_ROTATION), and random
offset. The latter is used for positioning newly loaded or automatically dragged documents.

Because we experienced problems with incidental rotation for dragged nodes on systems
other than Mac OS X, we had to introduce a working, but simpler incidental rotation behavior,
as explained in Sect. 4.3.1. The preference switch RANDOM_ROTATION_ONLY_AT_|'
&|MOUSE_RELEASE toggles between the more complex, animated, and better simulated
incidental rotation and the simple rotation implementation. This switch has only effect when
RANDOM_ROTATION is set to ON.

Additional sloppiness related preferences exist for grid support or straighten stacks, for
example, via CTRL-S. If grid is on, another switch is checked to see if it should be visually
represented with lines or whether it should be invisible and apply only its behavior. Grids
are currently in experimental state. They work most of the time correctly; however, they may
show strange behavior sometimes.

Fixed Size Documents Preferences One switch among the fixed size supporting features
is to force fixed sizes at document creation time. The sizes of loaded documents follow
then defaults, for example, based on ISO standards. This does not necessarily mean that a
document can be resized, which would be another preference switch.

We implemented a switch to force nodes to appear small when loaded. Currently, this is
used exclusively for WildDocs v1 to ensure nodes about the size as with other spatial structure
applications at load time. There is also a switch for a desk imitation, which we will discuss
in Sect. 4.1.4.

82

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 83 — #85 i
i

i
i

i
i

4.1. General

Preference Switch Default

Zooming and Navigation
– SMOOTHZOOMING ON
– MENUZOOM ON
– MENUZOOMSHORTCUT ON
– QUICKZOOM ON
– DEPARTUREAREAATQUICKZOOM ON
– SCROLLBARS ON

Rotation and Sloppiness
– PURPOSEFUL_ROTATION ON
– RANDOM_OFFSET ON
– RANDOM_ROTATION ON
– RANDOM_ROTATION_ONLY_AT_MOUSE_RELEASE ON
– STRAIGHTENSTACK ON
– GRID OFF
– GRIDVISIBLE OFF

Fixed Size Documents
– FIXEDSIZEDOCS OFF
– STYLEDTEXTINSETS OFF
– RESIZEABLEDOCS ON
– SMALLSIZEONLOAD OFF
– DESKIMITATION ON

General Settings
– FULLSCREENATSTART OFF
– FULLSCREENMENU OFF
– INDEXPUSHER ON
– AUTOCLICKONMOUSEOVER OFF
– LOWLEVELDOCBORDER OFF
– MANUELINDEXPUSH ON
– MANUELSIDEPUSH ON
– DELETEDOCUMENTS ON
– KEYRUBBERBANDSELECTION ON

Experimental Settings
– SHADOW OFF
– MOUSERUBBERBANDSELECTION OFF
– PRIMITIVEBINDINGS OFF
– COMPLEXBINDINGS OFF
– DESK OFF
– CANVAS_OR_DESK_PICKABLE ON

Table 4.2.: Preference switches and default settings

83

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 84 — #86 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

General Settings WildDocs’s general settings include switches for full screen mode at
startup, adding “Toggle Fullscreen Mode” to the “Window” menu, and for panning the back-
ground. The index pusher, discussed in Sect. 4.3.4, can be completely switched off. It also
can be decided to activate the feature of automatically changing the active node when the
mouse hits a node while dragging another one, as described in Sect. 4.4.2. LOWLEVELDO|'
&|CBORDER sets whether low level documents are surrounded by an additional frame. Low
level documents are discussed in Sect. 4.2.2.

There is a range of settings for structure manipulation.2 There are switches for pushing
the node to the back or to the front (MANUELINDEXPUSH), usually performed by pressing
CTRL-D or CTRL-U, or to push the node below the cursor to the left or right (MANUELS|'
&|IDEPUSH), usually performed by pressing CTRL-L or CTRL-R.

The possibility of deleting documents, available at the “Document” menu, can be enabled
by setting DELETEDOCUMENTS to ON. Finally, the selection of a range of nodes via rubber
band, created by menu or keyboard, can be enabled through a preference switch. Its function-
ality is discussed in Sect. 4.4.3.

Experimental Settings Several preference switches are available in conjunction with func-
tionality that is not implemented completely or working in an experimental state. This in-
cludes support for shadows or mouse rubber band selection.

As we will discuss in Sect. 4.2.3, WildDocs has partly implemented primitive and complex
bindings. There are preference switches for both types to enable or disable them indepen-
dently from each other. They are in experimental state.

There is a switch for extended desk support, named DESK. This is a real WildDocs binding,
not an adornment as the above mentioned desk imitation (DESKIMITATION). It is experimen-
tal and currently not completely functional. We will discuss it in Sect. 4.2.3.

CANVAS_OR_DESK_PICKABLE is indirectly responsible of setting the pickable flag at the
WDLayer instance to enable panning of the canvas if set to ON. It is planned, that dragging
events on the desk binding are passed through to result in panning the background instead.3

Currently, this switch is not implemented for the desk binding.

Initialization and Reset

The constructor takes an instance of PCanvas as mandatory attribute. It calls the superclass
constructor with the given canvas instance and requests to disable full screen mode. The asso-
ciated canvas, which is the one that was passed to the superclass, is then casted to WDCanvas
and the current WildDocs instance is associated at the canvas’s instance. The constructor
enables or disables full screen mode according to the preference switch FULLSCREENAT|'
&|START, and creates and associates an instance of WDObjectStore.

WildDocs is started via its main method, which contains one line:

2The class WildDocs also declares the static variable BROWSESTACKS (line 224), which we ignore, because it is
currently not used anywhere else. It also does not appear in Tab. 4.2. This constant was replaced by MANU|'
&|ELSIDEPUSH. – There is a typographic error for MANUELSIDEPUSH and MANUELINDEXPUSH. The fifth
letter of both should be an “A” instead of an “E”.

3It would not be practicable to drag the desk. The user would have to find a spot outside the desk that allows him/her
to drag the background. However, because desk bindings may be large, it is likely that most of the time there is
no such a spot at the visible area. It also would be a metaphor break, since a real desk usually is not moved for
navigation. Instead, the person’s view point changes, which is equivalent to panning the canvas in WildDocs.

84

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 85 — #87 i
i

i
i

i
i

4.1. General

Preference Switch v0 v1 v2 v3 v4

SMOOTHZOOMING ON OFF ON OFF OFF
MENUZOOMSHORTCUT ON OFF ON OFF OFF
QUICKZOOM ON OFF ON OFF OFF
SCROLLBARS ON ON OFF ON ON
PURPOSEFUL_ROTATION ON OFF OFF ON OFF
RANDOM_OFFSET ON OFF OFF ON OFF
RANDOM_ROTATION ON OFF OFF ON OFF
STRAIGHTENSTACK ON OFF ON OFF ON
RESIZEABLEDOCS ON ON OFF OFF OFF
SMALLSIZEONLOAD OFF ON OFF OFF OFF
DESKIMITATION ON OFF ON ON ON
INDEXPUSHER ON OFF ON ON ON
LOWLEVELDOCBORDER OFF ON OFF OFF OFF
MANUELSIDEPUSH ON OFF ON ON ON

Table 4.3.: Individual preference switches for WildDocs versions

[WildDocs.java | main(String[])]

1907 public static void main(String[] args) {
1908 changeToCompleteSettings();
1909 }

changeToCompleteSettings() is one of five methods that enables predefined and version
specific sets of features. In this case it sets its preferences to WildDocs v0 . The other methods
are called when WildDocs v1 , v2 , v3 , or v4 are instantiated. Table 4.3 depicts all settings
that may differ from the default, represented in Tab. 4.2. Each of those five methods calls
resetWildDocs(String) with the WildDocs version name as parameter. The name appears, for
example, in the window title.

After setting the title and creating a new WildDocs instance, the statistics of the previous
instance are compiled and written in a file. Its window is then closed and the native screen
resources released:

[WildDocs.java | resetWildDocs(String)]

1833 protected static WildDocs resetWildDocs(String aTitle) {
1834 WildDocs lastWD = CURRENT_WILDDOCS_INSTANCE;
1835 WildDocs wilddocs = new WildDocs(new WDCanvas());
1836 wilddocs. setTitle (aTitle) ;
1837

1838 if (lastWD != null) {
1839 lastWD.showStatistics();
1840 // wilddocs.setSize(lastWD.getSize());
1841 // wilddocs.setLocation(lastWD.getLocation());
1842 lastWD.setVisible(false) ;
1843 lastWD.dispose();
1844 }
1845

1846 CURRENT_WILDDOCS_INSTANCE = wilddocs;

85

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 86 — #88 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

The following part sets some attributes, which are then put in place:4 the menu bar; a node
factory that is used to create nodes; and, the window background, which is set to a given
default color:

[WildDocs.java | resetWildDocs(String)]

1853 PCanvas canvas = wilddocs.getCanvas();
1854 wilddocs.setMainMenuBar(new WDMainMenu(wilddocs));
1855 wilddocs.setNodeFactory(new WDNodeFactory(wilddocs));
1856 // wilddocs.setShadowLayer(new PLayer());
1857 canvas.setBackground(WILDDOCSDEFAULTCOLOR);

Statistics are very important for our usability test. In order to avoid losing the statistics
accidentally by exiting the application, we added a shutdown hook. This causes WildDocs to
create the statistics and save them to a file before quitting:

[WildDocs.java | resetWildDocs(String)]

1874 Runtime.getRuntime().addShutdownHook(new Thread() {
1875 public void run() {
1876 CURRENT_WILDDOCS_INSTANCE.showStatistics();
1877 }
1878 }) ;

The last part of resetWildDocs(String) deals with preferences and enables features accord-
ing to them:

[WildDocs.java | resetWildDocs(String)]

1880 if (MOUSERUBBERBANDSELECTION)
1881 canvas.addInputEventListener(new WDDeskInputEventHandler(wilddocs));
1882

1883 if (GRIDVISIBLE)
1884 wilddocs.paintGrid() ;
1885

1886 if (SCROLLBARS)
1887 wilddocs.activateScrollbars () ;
1888

1889 if (DESK)
1890 wilddocs.createDesk();
1891 if (DESKIMITATION)
1892 wilddocs.setDeskImitation(new WDDeskImitation(wilddocs, DESKWIDTH,
1893 DESKHEIGHT));
1894

1895 if (! PANNING)
1896 canvas.setPanEventHandler(null);
1897

1898 return wilddocs;
1899 }

4Usually, this would be placed inside the method initialize(), which overrides the method in PFrame and is called
during initialization. In this case, however, we experienced problems with GUI parts, such as click behavior for
scrollbars.

86

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 87 — #89 i
i

i
i

i
i

4.1. General

Document Loading and Creation

Line 840–1200 include mainly methods that are related to document creation, including show-
ing the license as WildDocs document on the screen or creating statistics. Statistics are dis-
cussed in its own section, starting on page 90.

Adding Documents to the Space There are methods for saving or loading the complete
object store. Both are triggered from the WildDocs instance. It delegates the task to the associ-
ated instance of WDObjectStore. This is still experimental and currently not fully functional.
We will describe the object store more detailed in Sect. 4.5.3.

There is a central method for adding documents to the WildDocs space:

[WildDocs.java | addNodeToDesk(WDDocument)]

1134 public void addNodeToDesk(WDDocument aDoc) {
1135 addNodeToDesk(aDoc, WITHRANDOMROTATION, WITHRANDOMOFFSET);
1136 }

This method delegates the creation, assuming that incidental rotation and offset are in-
tended:

[WildDocs.java | addNodeToDesk(WDDocument,boolean,boolean)]

1146 public void addNodeToDesk(WDDocument aDoc, boolean ifRandomlyRotated,
1147 boolean ifRandomOffset) {

1151 if (getDesk() == NO_DESK) {
1152 getLayer().addChild(aDoc.toPNode());
1153 } else {
1154 getDesk().getBindingMechanism().addDocument(aDoc);
1155 }
1156

1157 // Rotate and apply offset to the node.
1158 if (ifRandomlyRotated) {
1159 new WDNodeRotator(aDoc.toPNode()).rotateRandomly();
1160 }
1161

1162 if (ifRandomOffset) {
1163 new WDNodeDragger(this).dragRandomly(aDoc,
1164 WDNodeDragger.HUGE_MAX_RANDOM_OFFSET);
1165 }
1166

1167 if (aDoc instanceof WDLowLevelDoc && RESIZEABLEDOCS) {
1168 WDBoundsHandle.addBoundsHandlesTo(aDoc);
1169 }
1170

1171 if (aDoc instanceof WDLowLevelDoc && LOWLEVELDOCBORDER) {
1172 ((WDLowLevelDoc) aDoc).createBorder();
1173 }
1174

1175 updateShadows();
1176 }

87

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 88 — #90 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Adding a document depends on the given settings. The if-clause at line 1151 checks if
there is a desk binding associated.5 If there is one, the document is added to the desk’s
binding mechanism. Otherwise, it is added to the associated WDLayer instance.

Parameters about whether incidental rotation or offset are enabled were passed to this
method. If set to true, they trigger an instance of WDNodeRotator or WDNodeDragger to
perform the appropriate action.

If the given document is an instance of WDLowLevelDoc (see Sect. 4.2.2) and the prefer-
ence setting allows to resize documents, bounds handles are added to it. Similar to this, a
border may be painted around the document’s bounds on WDLowLevelDoc instances. Finally,
shadows are updated.

Importing Files Files of the type GIF, JPEG, PNG, plain text, HTML, or RTF can be loaded
directly into WildDocs. They are added as documents on the WildDocs space. The menu entry
“Import Documents. . . ” calls the method loadNode() in WildDocs:

[WildDocs.java | loadNode()]

1102 public void loadNode() throws IOException {
1103 boolean switchBackToFullscreen = false;
1104 if (getCurrentlyFullscreen() == ON) {
1105 switchBackToFullscreen = true;
1106 setFullScreenMode(OFF);
1107 }
1108

1109 File [] fileSelection = FileChooser.getFiles(this) ;
1110 if (fileSelection .length != 0) {
1111 for (int i = 0; i < fileSelection .length; ++i) {
1112 URI fileURI = fileSelection [i]. toURI();
1113 WDDocument doc = (WDDocument) getNodeFactory().newNode(fileURI);
1114

1115 if (SMALLSIZEONLOAD) {
1116 doc.toPNode().setWidth(SMALLLOADSIZE.getWidth());
1117 doc.toPNode().setHeight(SMALLLOADSIZE.getHeight());
1118 }
1119

1120 addNodeToDesk(doc);
1121 }
1122 }
1123

1124 if (switchBackToFullscreen == true) {
1125 setFullScreenMode(ON);
1126 }
1127 }

Line 1109 opens a file dialog window that allows to select one or multiple files. The file
URIs are individually passed to the associated instance of WDNodeFactory, which produces
a WDDocument instance for each. If the preferences are set to force small sizes for newly
loaded documents, the appropriate width and height are applied. Finally, the node is added to
the desk or layer.

5This is a desk binding (see Sect. 4.2.3), not a desk imitation (see Sect. 4.1.4).

88

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 89 — #91 i
i

i
i

i
i

4.1. General

The if-clauses at the method’s beginning (line 1104) and ending (line 1124) are necessary
because of a problem we discovered with opening a file dialog window while WildDocs is in
full screen mode. We tested this on Mac OS X with an active keyboard shortcut for importing
documents (CTRL-O).6 When activated while the full screen mode was on, the complete
display went black until ESC was pressed. Therefore, we introduced a simple mechanism
that checks if full screen is currently activated. If on, it switches full screen off and changes
back after loading the documents.

It can be argued that this method should be moved to WDNodeFactory, since it belongs
strongly to node creation.

Creating Bindings and “Internal” Text Documents Currently, WildDocs has partly im-
plemented bindings. Their instantiation is activated by selecting the appropriate entry in the
“Bindings” menu. This calls the desired action in WildDocs. New bindings are easy to add to
the system. We partly implemented book, sheet, and a generic primitive binding. The trigger
for creating a new book binding demonstrates exemplary the instantiation of a binding:

[WildDocs.java | createBook()]

898 WDBook book = new WDBook(this, WDBook.STANDARDMAXTHICKNESS, Color.blue,
899 WDDocument.A4);
900 addNodeToDesk(book);

The new WDBook instance is instantiated by passing additional information, such as the
maximum thickness, color, or size. Then, the newly created book is added to the space.

Internal texts, such as license and copyright information, or statistics, can be displayed as
WildDocs documents. An existing string is simply passed to WDNodeFactory, which returns
an instance of WDText. This may be modified before it is added to the WildDocs space. The
following example creates a document with the software license, which existed originally as
string:

[WildDocs.java | showLicense()]

954 WDLowLevelDoc licenseDoc = (WDLowLevelDoc) getNodeFactory().newNode(
955 license. replaceAll ("@year@", year));
956 licenseDoc.toPNode().setPaint(Color.YELLOW);
957

958 if (SMALLSIZEONLOAD) {
959 licenseDoc.toPNode().setWidth(SMALLLOADSIZE.getWidth());
960 licenseDoc.toPNode().setHeight(SMALLLOADSIZE.getHeight());
961 }
962

963 addNodeToDesk(licenseDoc);
964 return licenseDoc;

Changing the Desk Maximum one desk binding (WDDesk), as described in Sect. 4.2.3, is
associated to the running WildDocs instance. If a new desk is set, all children are moved to
the new one and the association to the old becomes overwritten:

[WildDocs.java | setDesk(WDDesk)]

588 public void setDesk(WDDesk aDesk) {

6This keyboard shortcut was disabled later, because it was not needed for the usability test.

89

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 90 — #92 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

589 passDeskChildren(getDesk(), aDesk);
590 if (getDesk() != NO_DESK) {
591 getDesk().getParent().removeChild(getDesk());
592 }
593 if (aDesk != NO_DESK) {
594 addNodeToDesk(aDesk, WITHOUTRANDOMROTATION, WITHOUTRANDOMOFFSET)|'

&|;
595 }
596 desk = aDesk;
597 }

Passing the children from the old desk to the new one is triggered at line 589 and executed
by passDeskChildren(WDDesk,WDDesk):

[WildDocs.java | passDeskChildren(WDDesk,WDDesk)]

1192 private void passDeskChildren(WDDesk aOldDesk, WDDesk aNewDesk) {
1193 if (aOldDesk != NO_DESK) {
1194 if (aNewDesk == NO_DESK) {
1195 getLayer().addChildren(aOldDesk.getChildrenReference());
1196 } else {
1197 aNewDesk.addChildren(aOldDesk.getChildrenReference());
1198 }
1199 }
1200 }

The positions of the documents will not change. If the new desk is smaller or has a different
position than the old one, documents may be placed outside its bounds. The semantics would
be that the documents were put onto the floor. It would be possible to write a method that uses
WDNodeDragger to drag the objects onto the new space; however, this may cause confusion
by the user.

It is not clear under what circumstances a desk could be changed and what benefits a user
would gain. On the other side, it also would be an option to support an arbitrary amount of
desks, possibly not allowing to put them on top of each other. This would cause an obvious
metaphor break.

Statistics Support

There are variables and methods for counting specific WildDocs features, such as how often
a user activated the shortcut for straightening a stack:

[WildDocs.java | increaseStatStraightenStack(int)]

784 public void increaseStatStraightenStack(int aNumber) {
785 statStraightenStack += aNumber;
786 }

A complete list of logged actions can be seen at the log file example in Sect. B.2. Methods
for increasing those counts are mostly called at the part of code that initiates the counted
action.

The menu entry “Show Statistics” creates a string that contains the desired data. A new
string is only created one time for each WildDocs instance. New statistics become appended
to old ones. They include the current time in milliseconds and the hash code of the WildDocs
instance. If the check box at the menu entry “Save Statistics automatically” is on, the statistics

90

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 91 — #93 i
i

i
i

i
i

4.1. General

are saved as text file by the following code. The current milliseconds and the instance hash
are also part of the file name:

[WildDocs.java | showStatistics()]

1078 if (getMainMenuBar().isSaveStatistics()) {
1079 String fileName = "WildDocs−" + millisNow + "msec_id" + id + ".log";
1080 try {
1081 WDTextSaver.save(fileName, stats);
1082 } catch (IOException e) {
1083 e.printStackTrace() ;
1084 }
1085 }

Finally, a document with the statistics is created and added to the WildDocs space by calling
addNodeToDesk(WDDocument). The passed document was created by WDNodeFactory and
marked with a cyan colored background:

[WildDocs.java | showStatistics()]

1066 WDLowLevelDoc statDoc = (WDLowLevelDoc) getNodeFactory().newNode(stats);
1067 statDoc.toPNode().setPaint(Color.CYAN);

The menu entry “Save Statistics in File Only” calls showStatistics(), but trashes the added
document from the WildDocs space afterwards.7 It appears to the user that the statistics were
only saved as a file.

[WildDocs.java | stampStatistics()]

971 public void stampStatistics() {
972 WDDocument stat = showStatistics();
973 stat . trash () ;
974 }

Full Screen and Scrollbars

Full Screen In the used version, we used Piccolo’s PFrame has no method that allows other
classes to check whether it is currently in full screen mode. The easiest solution was to add a
variable in WildDocs that stores the current mode. The method setFullScreenMode(boolean)
overrides a method in PFrame. It delegates the actual action to its superclass and sets the
current status locally via setCurrentlyFullscreen(boolean):

[WildDocs.java | setFullScreenMode(boolean)]

1209 public void setFullScreenMode(boolean ifFullscreen) {
1210 super.setFullScreenMode(ifFullscreen);
1211 setCurrentlyFullscreen(ifFullscreen) ;
1212 }

For example, this is used by toggleFullScreen(), which changes from full screen mode to
window mode and vice versa. It is called by the menu entry “Toggle Fullscreen Mode” or via
shortcut CTRL-F. The code sets the inverse of the current mode:

7A better way would be to move code for statistics creation and saving to stampStatistics(), returning the created
statistics string. showStatistics() should call stampStatistics() and add the returned string as document on the
desk.

91

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 92 — #94 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

[WildDocs.java | toggleFullscreen()]

1217 public void toggleFullscreen() {
1218 setFullScreenMode(!getCurrentlyFullscreen());
1219 }

Scrollbars Scrollbars can be activated by activateScrollbars(), which is called from reset|'
&|WildDocs(String) if the static preference constant is set to ON. We use Piccolo’s support
for scrollbars. The code for activateScrollbars() is based on the method initialize() of Piccolo’s
example class ScrollingExample:

[WildDocs.java | activateScrollbars()]

1226 public void activateScrollbars () {
1227 final PCanvas canvas = getCanvas();
1228

1229 final PScrollPane scrollPane = new PScrollPane(canvas);
1230 getContentPane().add(scrollPane);
1231

1232 final PViewport viewport = (PViewport) scrollPane.getViewport();
1233 final PScrollDirector windowSD = viewport.getScrollDirector();
1234

1235 viewport.fireStateChanged();
1236 scrollPane. revalidate () ;
1237 getContentPane().validate();
1238 }

After instantiating a new PScrollPane for the associated canvas (line 1229), it is added to
the content pane. PViewport (line 1232) and PScrollDirector (line 1233) handle position and
size, and give control over the scroll pane.

Grid

The functionality that lets documents snap to a grid when dragged is handled by WDNode|'
&|InputEventHandler. It is independent of the grid’s visibility. We will discuss this further
in Sect. 4.4.3. However, painting the grid is part of the WildDocs instance and performed by
paintGrid(). If on WildDocs reset the preference constant GRIDVISIBLE is checked to be ON,
the painting is initiated.

The grid is painted on the graphical representation of a WDLayer. The code for paintGrid()
is mostly taken from Piccolo’s class GridExample that demonstrates the use of a painted grid.
Currently, WildDocs uses the default values for grid spacing, which is given in millimeters
and converted by an instance of WDUnitConverter (line 1251).

[WildDocs.java | paintGrid()]

1249 final PLayer gridLayer = new WDLayer(this) {
1250 // BTW, this is WDLayer.getWildDocs().
1251 double gridspacing = new WDUnitConverter(getWildDocs())
1252 .wdToJava(GRIDSPACING);
1253

1254 protected void paint(PPaintContext paintContext) {

1257 double bx = (getX() − (getX() % gridspacing)) − gridspacing;
1258 double by = (getY() − (getY() % gridspacing)) − gridspacing;

92

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 93 — #95 i
i

i
i

i
i

4.1. General

1259 double rightBorder = getX() + getWidth() + gridspacing;
1260 double bottomBorder = getY() + getHeight() + gridspacing;
1261

1262 Graphics2D g2 = paintContext.getGraphics();
1263 Rectangle2D clip = paintContext.getLocalClip();
1264

1265 g2.setStroke(GRIDSTROKE);
1266 g2.setPaint(GRIDPAINT);
1267

1268 for (double x = bx; x < rightBorder; x += gridspacing) {
1269 GRIDLINE.setLine(x, by, x, bottomBorder);
1270 if (clip . intersectsLine(GRIDLINE)) {
1271 g2.draw(GRIDLINE);
1272 }
1273 }
1274

1275 for (double y = by; y < bottomBorder; y += gridspacing) {
1276 GRIDLINE.setLine(bx, y, rightBorder, y);
1277 if (clip . intersectsLine(GRIDLINE)) {
1278 g2.draw(GRIDLINE);
1279 }
1280 }
1281 }
1282 };

The method paint(PPaintContext) at line 1254 overrides the method in WDLayer. It cal-
culates the grid according to the given spacing, grid stroke, and grid color. After that, the
existing layer is replaced by the new grid layer:

[WildDocs.java | paintGrid()]

1285 root .removeChild(camera.getLayer(0));
1286 camera.removeLayer(0);
1287 root .addChild(gridLayer);
1288 camera.addLayer(gridLayer);

The following code matches the grid layer bounds with the camera view bounds. The grid
appears to be infinite:

[WildDocs.java | paintGrid()]

1293 camera.addPropertyChangeListener(PNode.PROPERTY_BOUNDS,
1294 new PropertyChangeListener() {
1295 public void propertyChange(PropertyChangeEvent evt) {
1296 gridLayer.setBounds(camera.getViewBounds());
1297 }
1298 }) ;
1299

1300 camera.addPropertyChangeListener(PCamera.PROPERTY_VIEW_TRANSFORM,
1301 new PropertyChangeListener() {
1302 public void propertyChange(PropertyChangeEvent evt) {
1303 gridLayer.setBounds(camera.getViewBounds());
1304 }
1305 }) ;
1306

93

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 94 — #96 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

1307 gridLayer.setBounds(camera.getViewBounds());
1308 }

Zooming

Absolute and Relative Zoom Several methods in WildDocs are directly related to zooming.
Zooming is applied to Piccolo cameras. The zoom method for relative zoom calculates the
absolute zoom scale and delegates it to zoomAbsolute(double):

[WildDocs.java | zoomRelative(double)]

1315 public void zoomRelative(double aRelativeFactor) {
1316 PCamera camera = getCanvas().getCamera();
1317 zoomAbsolute(camera.getViewScale() ∗ aRelativeFactor);

zoomAbsolute(double) sets the camera’s view scale to the given absolute zoom scale:

[WildDocs.java | zoomAbsolute(double)]

1331 public void zoomAbsolute(double aAbsoluteFactor) {
1332 PCamera camera = getCanvas().getCamera();
1333 camera.setViewScale(aAbsoluteFactor);

The following line causes the next quickzoom command to zoom completely out at next
call. This happens every time this method is called, for example, by activating a menu zoom
action:

[WildDocs.java | zoomAbsolute(double)]

1342 setZoomFrameAtQuickZoomOut(WildDocs.FULLZOOMOUT);
1343 }

Quickzoom Quickzoom can be triggered by the menu item “Toggle Quickzoom”, but is
usually activated by pressing CTRL-Z. This calls toggleQuickZoom(). Quickzoom zooms out
completely until all documents including the desk imitation can be seen on the screen. The
next quickzoom activation zooms back to the original zoom scale to where the mouse pointer
is located at that time.

Quickzoom – Calculation of Full Zoom Bounds Because quickzoom uses complete zoom
out, we wrote the method calcFullZoomBound() which calculates the destination bounds. This
only works if there are documents or a desk imitation on the WildDocs space. There is an
if-clause at the very beginning that tests this case:

[WildDocs.java | calcFullZoomBounds()]

1420 protected PBounds calcFullZoomBounds() {
1421 if (getLayer().getChildrenCount() > 0) {

If there are documents or a desk imitation on the WildDocs space, we create temporarily a
rectangle that represents the current camera view area on the space:

[WildDocs.java | calcFullZoomBounds()]

1429 double scale = getCanvas().getCamera().getViewScale();
1430

1431 PBounds bounds = getCanvas().getCamera().getFullBounds();
1432 Point2D centerLocal = bounds.getCenter2D();

94

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 95 — #97 i
i

i
i

i
i

4.1. General

1433 Point2D center = getCanvas().getCamera().localToView(centerLocal);
1434 double width = bounds.getWidth() / scale;
1435 double height = bounds.getHeight() / scale;
1436

1437 PPath scaleBoundsGraphics = PPath.createRectangle(0, 0,
1438 (float) width, (float) height) ;
1439 scaleBoundsGraphics.centerBoundsOnPoint(center.getX(), center
1440 .getY()) ;

Firstly, the camera’s scale and bounds are calculated. The center of the auxiliary rectangle
is the center of the camera. We need to transform its coordinates, because the camera’s
bounds do not represent the current scale. The correct width and height of the rectangle
on the space are calculated by dividing the camera’s width and height by the current scale
(line 1434–1435). Finally, the rectangle is created and centered on the calculated center point
(line 1439).

The bounds of the new rectangle are calculated and associated for later use. They represent
the departure bounds from where the quickzoom command will zoom away:

[WildDocs.java | calcFullZoomBounds()]

1446 PBounds scaleBounds = scaleBoundsGraphics.getFullBounds();
1447

1448 setZoomFrameAtQuickZoomOut(scaleBounds);

The next part of the method deals with calculating the arrival bounds to where quickzoom
is supposed to zoom to. These bounds surround all existing documents, including desk imi-
tation, if existing:

[WildDocs.java | calcFullZoomBounds()]

1453 WDTempNodeStorage allNodes = new WDTempNodeStorage();
1454 allNodes.addAll(getLayer().getAllNodes());
1455 allNodes.keepFiltered(new DocumentFilter());
1456

1457 // Add the desk imitation if available .
1458 if (getDeskImitation() != null) {
1459 allNodes.add(getDeskImitation());
1460 }

Firstly, all WDDocument instances are filtered (line 1454). This includes an existing desk
binding, but not a desk imitation. This would lead to behavior that would be unexpected and
not obvious for the user, who may interpret a desk binding and desk imitation as being from
the same source. Therefore, an existing desk imitation is also added to the list of documents
at line 1459.

An iterator iterates through the collection, adding the bounds of each object to the bounds
of a PBounds instance that was created only for that purpose. After finishing, these bounds
surround all given documents as well as the desk imitation:

[WildDocs.java | calcFullZoomBounds()]

1462 PBounds span = new PBounds();
1463

1464 Iterator iterator = allNodes. iterator () ;
1465 while (iterator .hasNext()) {
1466 PNode node = (PNode) iterator.next();
1467 span.add(node.getFullBounds());

95

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 96 — #98 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

1468 }

The bounds object is returned on line 1481. If there are no objects on the WildDocs space,
then the if-clause at line 1421 returns false, and the previously discussed calculations are not
performed. Instead, null is returned on line 1483:

[WildDocs.java | calcFullZoomBounds()]

1481 return span;
1482 } else {
1483 return null ;
1484 }

Quickzoom – Zoom Out The method toggleQuickZoom() supports context-based zooming
out or zooming in. The first part handles zooming out.

[WildDocs.java | toggleQuickZoom()]

1354 public void toggleQuickZoom() {

1360 if (getZoomFrameAtQuickZoomOut() == FULLZOOMOUT
1361 || getZoomFrameAtQuickZoomOut() == null) {
1362 PBounds fullZoomOut = calcFullZoomBounds();
1363

1364 if (fullZoomOut == null) {
1365 System.err.println ("WARNING: No fullzoom performed, "
1366 + "because there are currently no nodes.");

The if-clause at line 1360 uses getZoomFrameAtQuickZoomOut(). It returns the bounds of
the previous viewport at the time quickzoom was triggered to zoom out. A returned value
null indicates that there is no previous viewport stored. In this case, WildDocs continues
with the full zoom out sequence. The same happens when the recent zoom scale is set to
FULLZOOMOUT.8

Quickzoom’s full zoom out works only if there are objects on the desk. The destination
view will show all of them on the screen. Line 1362 requests the bounds that go around all
documents and desk imitation on the space. The following if-clause returns an error message
if the bounds are null. This would mean that there are no objects that can be surrounded.
Otherwise, an animation toward the calculated bounds is triggered:

[WildDocs.java | toggleQuickZoom()]

1367 } else {
1368 animateZoom(fullZoomOut);

The method animateZoom(PBounds) creates an instance of PActivity which contains in-
formation to animate the current camera view to the center of the given bounds. It is then
scheduled with the root and executed:

[WildDocs.java | animateZoom(PBounds)]

1493 protected void animateZoom(PBounds aBounds) {
1494 // Change the duration according to your needs.
1495 long zoomDuration = 300;
1496

8Currently, the constant FULLZOOMOUT is set to null. The reason why the if-clause at line 1360 checks both is that
there is no guarantee that the constant will continue to have this value in the future.

96

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 97 — #99 i
i

i
i

i
i

4.1. General

Figure 4.3.: Screenshots of viewport before (left) and after quickzoom’s complete zoom out,
showing quickzoom’s fading out magenta colored destination rectangle (right)

1497 PActivity cameraMovement = getCanvas().getCamera()
1498 .animateViewToCenterBounds(aBounds, true, zoomDuration);
1499

1500 /∗
1501 ∗ Note that an activity will not run, unless it is scheduled with the
1502 ∗ root !
1503 ∗/
1504 if (cameraMovement != null) {
1505 getCanvas().getRoot().addActivity(cameraMovement);
1506 cameraMovement.setStartTime(System.currentTimeMillis());
1507 }
1508 }

The zoom duration is currently set to 300 ms (line 1495), providing fast, but smooth an-
imation “to maintain the identity of objects in their contexts” (Ware, 2004, 343). Another
orientation supporting feature is Quickzoom’s fading out magenta colored transparent rectan-
gle that indicates the destination area. This helps the user to experience his/her previous view
area for a short period of time when zoomed out. An example is depicted in Fig. 4.3. The
following code snippet performs the destination rectangle:

[WildDocs.java | toggleQuickZoom()]

1369 PBounds camBounds = getCanvas().getCamera().getViewBounds();
1370

1371 if (DEPARTUREAREAATQUICKZOOM) {
1372 /∗
1373 ∗ Show a fading out rectangle to show the departure area.
1374 ∗/
1375 Point2D camPos = camBounds.getOrigin();
1376 WDRubberBand rubber = new WDRubberBand(this, camPos.getX(),
1377 camPos.getY(), camBounds.getWidth(), camBounds
1378 .getHeight(), Color.MAGENTA,
1379 new BasicStroke(0), Color.MAGENTA);
1380 rubber.removeFromWildDocs(WDRubberBand.LONGDURATION);
1381 }

97

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 98 — #100 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

1382 }

After the view bounds are returned, it is checked if the preference entry for departure area is
set to ON (line 1371). If yes, a new WDRubberBand instance is created that fits the camera’s
size and origin (line 1376). Color and stroke are set to magenta. Right after its creation, the
rubber band is triggered to fade out and remove itself from the WildDocs space. The constant
for long duration (LONGDURATION) is currently set to 5 seconds. We will discuss rubber
bands more extensively in the context of selection (Sect. 4.4.3).

Quickzoom – Zoom (Back) In If the if-clause at line 1360 shows that the previous zoom
viewport is set to FULLZOOMOUT or that there is no viewpoint stored, WildDocs is already
fully zoomed out. The action will zoom in to where the cursor is located at that moment. The
previous viewport dimensions will be used. Zooming back is also animated:

[WildDocs.java | toggleQuickZoom()]

1384 } else {
1385 /∗
1386 ∗ Zoom back to the original scale frame.
1387 ∗/
1388

1389 // Check the current cursor position .
1390 Point2D mouse = currentMousePositionOnCamera();
1391

1392 // Dummy node to center bounds (destination)
1393 PPath dummyDest = new PPath(getZoomFrameAtQuickZoomOut());
1394 dummyDest.centerFullBoundsOnPoint(mouse.getX(), mouse.getY());

1408 animateZoom(dummyDest.getFullBounds());
1409

1410 // Next time, do a full zoom out.
1411 setZoomFrameAtQuickZoomOut(FULLZOOMOUT);
1412 }
1413 }

The destination view is centered at the cursor’s position. currentMousePositionOnCamera()
simply returns the current mouse position coordinates on the camera, transformed to the view
coordinate system:9

[WildDocs.java | currentMousePositionOnCamera()]

1805 public Point2D currentMousePositionOnCamera() {

1810 return getCanvas().getCamera().localToView(
1811 currentMousePositionOnCanvas());
1812 }

After the mouse position is returned, a dummy node is created with the previous viewport
dimensions (line 1393). The node is added to the WildDocs space. Its only purpose is to
be centered at the cursor position to mark the zoom destination area. Finally, an animated
zoom to the dummy node’s bounds is called at line 1408. The previous zoom viewport is set
to FULLZOOMOUT. This causes the next quickzoom command to zoom out completely next
time.

9Apparently, also transformations to other coordinate systems work, such as parent to local, global to local, local to
global, and local to parent.

98

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 99 — #101 i
i

i
i

i
i

4.1. General

Moving Documents

Push Node Up/Down Beside moving documents on the screen via Piccolo’s support for
dragging, WildDocs has additional ways to alter a document’s position. One is to push a node
to the front (“up”) or to the back (“down”). These are called by WDMainMenu, for example,
through pressing CTRL-U or CTRL-D. The action affects the document below the cursor.

[WildDocs.java | pushNodeUpOrDown(int)]

1543 public void pushNodeUpOrDown(int aUpOrDownMark) {
1544 PNode node = getLastMouseOverOnDocument().toPNode();
1545 PNode parent = node.getParent();

The requested document below the cursor is returned by getLastMouseOverOnDocument(),
which returns a value that is delivered by WDNodeInputEventHandler whenever the mouse is
moving above a WDDocument instance. We will discuss this further in Sect. 4.4.3.

[WildDocs.java | pushNodeUpOrDown(int)]

1553 if (aUpOrDownMark == UP) {
1554 parent.addChild(node);
1555 } else {
1556 // Take care that the desk is still below!
1557 int idx = 0;
1558 if (DESKIMITATION)
1559 idx++;
1560 if (DESK)
1561 idx++;
1562 parent.addChild(idx, node);
1563 }
1564 }

If the provided move direction mark equals UP, the document is simply added to its parent.
This results in assigning the highest index to the node. It is therefore displayed above its
siblings.

Otherwise, the node’s index is set to zero, which may be increased, depending on the
existence of a desk metaphor. Indices of all siblings will be increased if this new index
number is already taken by another node. A special case occurs if a desk imitation exists.
Setting the node’s index to 0 would cause the document to be displayed below the desk. To
avoid this, its index is increased by 1 (line 1559).

From our current point of view, increasing the document’s index additionally by 1 when
a desk binding exists, as coded at line 1561, is not necessary (in fact, even wrong). The
document that is on the desk will not be put behind the desk, because it is its parent. In such a
case, increasing the document’s index to 1 would cause another sibling document to be placed
underneath the pushed node. If the document is a sibling to the desk,10 it may be desired to
put the document below the desk, which is currently not possible. Following this analysis, we
claim that line 1560 and 1561 should be deleted in a future version.

Push Node Left/Right Another way to manipulate a document’s position is to move the
node below the cursor to the left or to the right by pressing CTRL-L or CTRL-R. Originally,
this behavior was implemented to enable the user to browse stacks efficiently.

10This can follow the metaphor of putting a document beside the desk onto the floor.

99

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 100 — #102 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

[WildDocs.java | pushNodeSidewards(int)]

1572 public void pushNodeSidewards(int aLeftOrRightMark) {
1573 PNode node = currentMouseOverNode();
1574

1575 // Move only documents
1576 if (node instanceof WDDocument) {

The node directly below the cursor is relevant for moving. Only instances of WDDocument
are processed.11 The method currentMouseOverNode() requests the current mouse position,
which is used to get the PPickpath instance that leads to the node below the cursor. PCamera’s
method pick(double,double,double)12 returns a pick path that has the node below the cursor as
last node.

[WildDocs.java | currentMouseOverNode()]

1819 public PNode currentMouseOverNode() {
1820 Point2D mousePos = currentMousePositionOnCanvas();
1821 PNode node = getCanvas().getCamera().pick(mousePos.getX(),
1822 mousePos.getY(), 3).getPickedNode();
1823 return node;
1824 }

The used method for calculating the mouse position at line 1820 is different to the previ-
ously described currentMousePositionOnCamera(), which we explained on page 98. In this
case the coordinate system of the canvas is relevant, not the camera’s. The method looks
similar to the camera related one; however, the coordinates do not need to be transformed to
another system:

[WildDocs.java | currentMousePositionOnCanvas()]

1793 public Point2D currentMousePositionOnCanvas() {
1794 return getCanvas().getRoot().getDefaultInputManager()
1795 .getCurrentCanvasPosition();
1796 }

After the node below the cursor is assigned to a variable and it is clear that it is an instance
of WDDocument, WildDocs continues with calculating the destination of the active node.
Currently, the offset position for the document’s center is hard coded to 10 mm outside the
document’s left or right bound. Support for vertical offset is included, but set to zero. If the
push direction is to the left, the horizontal and vertical offsets are multiplied by −1. This is
calculated inside the if-clause of line 1595. This causes to change directions. Finally, a newly
created WDNodeDragger instance (see Sect. 4.3.2) drags the document with its center to the
calculated position. This action is animated.

[WildDocs.java | pushNodeSidewards(int)]

1590 double additional = new WDUnitConverter(this).wdToJava(10);
1591 double offsetX = new PPath(node.getFullBounds()).getWidth()
1592 + additional ;
1593 double offsetY = 0;
1594

11Line 1577–1581 (removed here) is a remnant of an earlier version and without function. Originally it found the
most far away ancestor of the given document.

12The first two values represent the x and y position of the mouse cursor. The third value specifies the size of the
rectangle that is used for picking.

100

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 101 — #103 i
i

i
i

i
i

4.1. General

1595 if (aLeftOrRightMark == LEFT) {
1596 offsetX ∗= −1;
1597 offsetY ∗= −1;
1598 }
1599

1600 WDNodeDragger dragger = new WDNodeDragger(this);
1601 dragger.dragCenterToPosition(node, offsetX, offsetY);

This is a quick solution for dragging documents to the side. The destination depends on
the individual document size, but does not consider the stack of which the document is part
of. A better solution would be to use WDClusterRecognizer (see Sect. 4.3.5) to calculate the
stack’s bounds and to move the document outside those. A WDNodeIndexPusher instance
(see Sect. 4.3.4) could be used to update the indices so that the node that was originally below
the previously moved one would be pushed on top of it in case they do not overlap.

Currently it can be the case that a pushed document still intersects partly with the node
below. In order to ensure that the next node is put on top of the recent moved one, the pushed
node is put above all siblings:

[WildDocs.java | pushNodeSidewards(int)]

1612 node.getParent().addChild(node);
1613 }
1614 }

Straighten Stacks An action that may be applied to several nodes at the same time is
straighten stacks. The shortcut CTRL-S centers all nodes that intersect with the current cur-
sor position. straightenStack() creates a new temporary storage object with all nodes that are
located directly below the cursor:

[WildDocs.java | straightenStack()]

1619 public void straightenStack() {
1620 WDTempNodeStorage docsBelowCursor = nodesBelowCursorOnLayer();

The method nodesBelowCursorOnLayer() returns a WDTempNodeStorage object contain-
ing all requested nodes:

[WildDocs.java | nodesBelowCursorOnLayer()]

1705 private WDTempNodeStorage nodesBelowCursorOnLayer() {

1710 Point2D mousePos = currentMousePositionOnCamera();
1711

1712 float mouseX = (float) mousePos.getX(); // currentMousePosition().getX();
1713 float mouseY = (float) mousePos.getY(); // currentMousePosition().getY();

The first step is to get the mouse position by requesting it from currentMousePositionOn|'
&|Camera(), as already described on page 98. The x and y values of the returned point are
stored in different variables. A small rectangle is created at the mouse position. Its width and
height are one pixel each. It simulates the cursor during the next steps:

[WildDocs.java | nodesBelowCursorOnLayer()]

1719 PPath cursor = new PPath();
1720 cursor.setPathToRectangle(mouseX, mouseY, 1, 1);

101

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 102 — #104 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

In the following, all nodes that are attached to the current layer are put into a temporary
storage object (see Sect 4.5.3). Then, three filters are applied: Only instances of WD|'
&|Document that intersect with the cursor simulation and are direct descendants of the layer
are kept.13 Finally, the storage object containing the remaining documents is returned:

[WildDocs.java | nodesBelowCursorOnLayer()]

1733 WDTempNodeStorage docsBelowCursor = new WDTempNodeStorage(getLayer()
1734 .getAllNodes());
1735

1736 docsBelowCursor.keepFiltered(new DocumentFilter());

1746 docsBelowCursor.keepFiltered(new IntersectionFilter(cursor));
1747

1748 // Currently only direct descendents of the layer are manipulated.
1749 docsBelowCursor.keepFiltered(new DescendentFilter(getLayer()));
1750

1751 return docsBelowCursor;
1752 }

After finding the set of documents below the cursor, the method straightenStack() checks
now the returned array and continues performing to straighten if it is not empty:

[WildDocs.java | straightenStack()]

1622 if (! docsBelowCursor.isEmpty()) {

1627 PNode highestNode = (PNode) docsBelowCursor.getHighestIndexNode();
1628 double basicRotation = highestNode.getGlobalRotation();

1634 WDNodeDragger dragger = new WDNodeDragger(this);
1635 dragger.dragCenterToPosition(docsBelowCursor,
1636 currentMousePositionOnCanvas(),
1637 WDNodeDragger.SMALL_MAX_RANDOM_OFFSET, basicRotation);
1638 }
1639 }

To straighten a stack does not only include minimization of the offset among the docu-
ments, but also adjustment of their rotation. WildDocs takes the node with the highest index
among the relevant ones and gets its global rotation (line 1628). A newly created WDNode|'
&|Dragger instance is triggered at line 1635 to drag the center of the relevant nodes to the
current mouse position, including the rotation of the topmost document and a small random
offset, which is used if the preference switch for random offset is set to ON. The method for
calculating the mouse position (currentMousePositionOnCanvas()) returns the coordinates in
the canvas’s coordinate system, as described on page 100.

Selecting Nodes There are three methods in WildDocs that handle multiple node selection
and movement. We will discuss them detailed in Sect. 4.4.3.
13The latter filter (DescendentFilter) is only relevant if bindings are used. Only those are intended to be placed

directly on the space. The underlying philosophy is based on the idea that it is the binding that needs to be
activated in order to move also its content. After the post-supervision of our code, we criticize this. We argue
that it may be intended to move a document that is placed inside a binding without moving the binding itself. For
example, this would be the case with desk bindings that hold all documents that are placed on them as children.
Those cases would not work with the current implementation. However, this discussion is not relevant for our
usability test.

102

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 103 — #105 i
i

i
i

i
i

4.1. General

Deleting Documents

Similar to node selection, a document can be deleted by moving the cursor on top of it and
pressing CTRL-Backspace. The node below the cursor will be determined. If it is an
instance of WDDocument, it will be destroyed; otherwise, an error message is written.

[WildDocs.java | deleteDocument()]

1759 public void deleteDocument() {
1760 PNode node = currentMouseOverNode();
1761

1762 if (node instanceof WDDocument) {
1763 ((WDDocument) node).trash();
1764 } else {
1765 System.err
1766 . println ("WARNING: The object that had the mouse over "
1767 + "was not deleted, because it is not a WDDocument instance.");
1768 }
1769 }

Another method clears the complete space. This can be triggered by the menu entry “Delete
ALL documents”. All children of the layer will be removed. If desk imitation or desk binding
are active, they will be created again afterwards:

[WildDocs.java | deleteAllDocuments()]

1774 public void deleteAllDocuments() {
1775 getLayer().removeAllChildren();
1776

1777 // Re−create the desk if desired
1778 if (DESK)
1779 createDesk();
1780

1781 // Re−create the desk imitation if desired
1782 if (DESKIMITATION)
1783 setDeskImitation(new WDDeskImitation(this, DESKWIDTH, DESKHEIGHT));
1784 }

A desk imitation (see Sect. 4.1.4) is not an instance of WDBinding, whereas the desk binding
(see Sect. 4.2.3) is. The actual semantics of the menu entry “Delete ALL documents” would
include the deletion of an existing desk binding. However, we assume that a desk binding,
even though internally a binding and therefore a WDDocument, is not considered as what
most people would denote a document. We further assume that a user would be surprised if a
desk also would disappear, especially since a desk imitation would not. Instead of following
the internals consistently, we implemented behavior that the user assumedly would expect.

4.1.3. Layer

WildDocs’s class WDLayer extends Piccolo’s PLayer to switch on or off background panning.
Its central part is its constructor that checks the preference setting for panning the background
at WildDocs (CANVAS_OR_DESK_PICKABLE) and sets the pickable flag accordingly to true
or false. If set to true, the user can press the mouse button on the background and drag the
background. This is used for navigation. If set to false, pressing the mouse on the background

103

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 104 — #106 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

and moving the mouse does not have any other visual result than moving the mouse without
pressing it: The background will not change its position.

4.1.4. Desk Imitation

There is a desk imitation that is used for WildDocs v0 , v2 , v3 , and v4 , implemented via
WDDeskImitation. It extends Piccolo’s class PPath and implements WDAdornment. Even
though it implements the same interface, it differs from the document adornments presented
in Sect. 4.2.2, where we also will discuss WDDeskImitation more detailed. (Figure 4.5 on
page 111 depicts relations to other classes.)

Adornments are in package documents.adornments. They are visual add-ons. They strongly
depend on the object they are attached to, such as shadows. They do not have any direct user
controllable behavior. Similarly, WildDocs’s desk imitation does not have a directly con-
trollable behavior. Even panning the background is internally done by the layer instance.
However, its semantics differ from document adornments. The desk imitation simulates a
desk. Therefore it is not strongly attached to another object. Semantically spoken, there is a
stronger relationship to WDDesk, internally handled as document, than to document adorn-
ments. In fact, WDDeskImitation should be replaced by WDDesk when complex bindings are
switched on. However, WDDeskImitation is not considered as a document, whereas WDDesk
is. We will discuss WDDesk in Sect. 4.2.3. The main reason to implement WDDeskImitation
was to have a desk metaphor already working before bindings, including WDDesk, would be
finished.

The WDDeskImitation constructor calls a method that paints the desk imitation and adds
it to the WildDocs space. Attributes used for painting are width and height of the rectangle.
They are converted from millimeters to pixels by WDUnitConverter. Further attributes are
x and y position, stroke type and color, desk imitation color and transparency. The desk
imitation’s pickable flag is set to false. It ignores all mouse input events.

4.2. Documents

4.2.1. General

The central objects in WildDocs are documents. This can be either a binding or a low level
document. A binding is an object that can bind other documents. Low level documents are
objects that hold data, such as image or text, but cannot bind other documents. Low level
documents may have adornments attached, such as visible document bounds or shadows. We
discuss low level documents and bindings in Sect. 4.2.2 and 4.2.3 in depth.

All documents implement the interface WDDocument, which extends Java’s interface Clone-
able. They are part of the package documents. WDDocument defines some constants that are
relevant for all documents, such as VISIBLE, NOT_PICKABLE, or constants for paper sizes,
such as ISO (e. g., A4 or A5) or ANSI (e. g., Letter or Legal) standards.

Setter and getter implementations handle the associations to related WildDocs instances and
to the parent binding mechanisms. Additional implementations need to be coded for get|'
&|ClipAlignment() and getThickness(). The clip alignment method is used when a document
is added to a binding. The thickness method returns the thickness of a document.

104

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 105 — #107 i
i

i
i

i
i

4.2. Documents

de.atzenbeck.wilddocs.documents

de.atzenbeck.wilddocs.documents.lowLevel

«realize»«realize»

«interface»
WDDocument

edu.umd.cs.piccolo

PNode

edu.umd.cs.piccolo.nodes

PPath PText PImage

edu.umd.cs.piccolox.nodes

PStyledText

«interface»
WDLowLevelDoc

WDTextWDStyledText WDBindingCover WDShape WDImage

Figure 4.4.: Low level documents class diagram (package documents.lowLevel)

Furthermore, important methods include trash() to delete a document, turn() to turn it, to|'
&|PNode() to convert it from a WildDocs WDDocument to a Piccolo PNode, index() to re-
trieve the index path of the node including all parent nodes, and compareTo(WDDocument)
to compare a document’s index path to another one’s. Selected parts of the interface will be
discussed more detailed in those sections where we present implemented classes.

4.2.2. Low Level Documents

Supported Types

Low level document classes can be found in documents.lowLevel. They implement the inter-
face WDLowLevelDoc, an extension of WDDocument. Originally, WildDocs had no notion
of binding. Nodes were exclusively nodes provided by Piccolo, such as PText, PImage, etc.
When binding were introduced, there was a need to specify the existing document types as
non-binding, which only can exist at the very “lowest part” of a structure path. This is where
the name “low level document” is derived from. Currently, they still extend some of Piccolo’s
node classes.

WDLowLevelDoc has setters and getters for setting or retrieving associated WDShadow or
WDLowLevelDocBorder instances. Shadow and border are adornments and will be explained
in an upcoming section. The interface has also some additional relevant constants, for exam-
ple, defining default values for low level documents.

Other methods that are implemented by low level documents are removeAllInputEvent|'
&|Listener() to remove the node’s input event listener, setShadowVisible(boolean) to make

105

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 106 — #108 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

the shadow visible or invisible, updateShadow() to trigger an update of the shadow, create|'
&|Border() to create a border around the node, and removeBorder() to remove the associated
border line.

Currently, WildDocs has implemented the classes WDImage for images, WDText for plain
text, and WDStyledText for HTML or RTF support. There are also WDBindingCover for covers
used on bindings, and WDShape for support for arbitrary shapes. However, both are in a very
early development state and became partly obsolete by new developments: Binding covers as
low level documents are a remnant of a development phase before bindings were introduced
that support arbitrary structure levels. With bindings, WildDocs is capable of using arbitrary
cover pages that contain images or text or combinations of both.

Constructors of all existing WDLowLevelDoc implementing classes take at least a WildDocs
instance as an argument and builds an association to it. Depending on the class, there may
be additional arguments used by the constructor that are discussed in one of the following
sections. All discussed low level document classes set a clip alignment position. This is used
to calculate where the document clips onto a binding. Further, they add a newly created input
event handler that takes care of mouse interactions with the node. The background color is
set to a default value, if not set already. We use the constructor of WDImage exemplary for
all discussed low level document classes:

[WDImage.java | WDImage(WildDocs,URI)]

78 public WDImage(WildDocs aWildDocs, URI aFileURI)
79 throws MalformedURLException {
80 super(aFileURI.toURL());
81

82 // set color if necessary
83 if (getPaint() == NO_COLOR) {
84 setPaint(DEFAULTCOLOR);
85 }
86

87 setWildDocs(aWildDocs);
88 setClipAlignment(LOWLEVELDOC_DEFAULTCLIPALIGNMENT);
89

90 addInputEventListener(new WDNodeInputEventHandler(aWildDocs));
91 }

The setters setWidth(double) and setHeight(double) exist for all low level documents that
are currently implemented. They function equivalently. They override a method in their
superclass. The following is the code for setWidth(double) in WDImage:

[WDImage.java | setWidth(double)]

141 public boolean setWidth(double aWidth) {
142 if (getBorder() != null) {
143 getBorder().setWidth(aWidth);
144 }
145 return super.setWidth(aWidth);
146 }

The purpose of this method is to adjust the change to the document’s border, if existing.
The border is returned by getBorder() and is an instance of WDLowLevelDocBorder. Then,
the new width is passed to the superclass to change also the node itself.

All remaining setters and getters of the discussed low level documents are used to access

106

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 107 — #109 i
i

i
i

i
i

4.2. Documents

private variables, except for getThickness(). This method currently returns the constant LO|'
&|WLEVELDOC_DEFAULTTHICKNESS, which contains a default value for a standard paper
thickness. The thickness of documents is needed to calculate and evaluate the thickness of
bindings. WildDocs does not support bindings completely yet. Therefore, thickness is cur-
rently not used.

Among others, the following methods are requested by the interface WDLowLevelDoc and
inherited from WDDocument: toPNode() returns the current node as PNode. Since all current
low level documents inherit from PNode, this method simply returns the casted object. trash()
removes the document by calling removeFromParent(). turn() was originally planned for all
documents, including low level documents. The idea was to have pairs of nodes, one front
side and one back side, each simulating a sheet of paper. This became obsolete with bindings.
For example, a sheet binding (discussed on page 124) would fulfill this requirement. On all
discussed low level documents, turn() reports the error message that instances of this class
cannot be turned. index() returns the index path of the document, calculated by WDIndex|'
&|Comparator. Finally, compareTo(WDDocument) compares the index of the document with
the index of a given one.

Other required implementations are: removeAllInputEventListener() removes all attached
input event listener by iterating through the list of listeners and removing them one by one.
createBorder() sets an association to a newly created instance of WDLowLevelDocBorder and
adds it as child to the node. The border appears as a thin surrounding line along the node’s
bounds. removeBorder() removes the border by simply removing it from its parent node.

The method setShadowVisible(boolean) sets an existing shadow of a node to visible or
invisible, depending on the passed parameter. Only low level documents can have a shadow.
Bindings do not have shadows, but their objects at the lowest level may have. What a user
may interpret as the “binding’s shadow” is the sum of the shadows of all of its low level
documents. The shadow update for most discussed low level documents14 is performed by an
equivalent of the following exemplary code snippet, taken from WDImage:

[WDImage.java | updateShadow()]

268 public WDShadow updateShadow() {
269 boolean visibility ;
270 if (getShadow() == NO_SHADOW) {
271 visibility = VISIBLE;
272 } else {
273 visibility = getShadow().getVisible();
274 }
275 setShadow(new WDShadow(this));
276 setShadowVisible(visibility) ;
277

278 return getShadow();
279 }

Currently, this method is only called from within updateShadows() in class WildDocs. At
this time, all shadows are already removed before the new one is set. Adding the shadow to the
layer happens at the above mentioned method at line 1529, shown on page 113. This mech-
anism has been written over time and can be criticized for not providing an autonomously
working updateShadow(). Removing the old shadow and adding the new one to the layer
should be placed inside this method instead of being called within WildDocs.
14updateShadow() in WDText contains only line 275 and 276 of the WDImage code snippet on this page.

107

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 108 — #110 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Image WDImage extends Piccolo’s PImage, which is a wrapper around Java’s class Image
(package java.awt). In principle, all image formats that are supported by Image work also in
WildDocs. However, we have implemented a simple file recognition that recognizes only the
file extensions for PNG, JPEG, and GIF files (see also Sect 4.3.7). WDImage instances draw
the image over the complete node, possibly distorting. As long as distortion over the complete
node is active, setting the background during creation, as shown at line 84 at the code snippet
on page 106, would not be necessary.

An additional argument passed to the constructor contains the path to the image file as
URI. It is converted to an instance of URL at line 80 and passed to the superclass, which loads
the image.

Plain Text Instances of WDText extend Piccolo’s class PText. It supports multi-line plain
text representation. There are three constructors. All of them expect a WildDocs instance as
the first argument. One of them additionally expects a file path as URI that points to a text file.
WDTextLoader loads a file and returns it as string, which is passed to the second constructor.

The second constructor (line 142–144) takes the WildDocs instance and the given textual
content and passes them to a third constructor, adding the constant NO_LINEOFFSET as a
third attribute. This constant, an integer, indicates that there is no line offset given.

The final constructor passes the given text to the superclass, which creates a node with the
given string as content. Beside the method calls explained above for color, clip alignment,
and input event handler, this constructor adds some additional settings:

[WDText.java | WDText(WildDocs,String,int)]

108 setGreekThreshold(DEFAULTGREEKTHRESHOLD);
109 setSuccessor(NO_TEXT);
110 setLineOffset(aLineOffset);

This code snippet shows that the greek threshold is set to a default value. This value sets
a limit of font sizes below which a font is displayed “greek” looking. This prevents the
system of rendering lots of small texts that possibly cannot be read, because of its size and
the insufficient screen resolution. This is relevant mostly when zooming out. Further, the
successor is set to NO_TEXT and the line offset to the given integer value. Both have to
do with splitting up a text into several nodes automatically, as it is necessary for fixed size
document when the text does not fit on one page. There will be an explanation later in this
section.

[WDText.java | WDText(WildDocs,String,int)]

117 setConstrainWidthToTextWidth(false);
118 setConstrainHeightToTextHeight(false);

This code snippet enables dynamic breaking of long lines. Originally, the setting of this
was dependent upon whether or not documents were of fixed or variable size, whereas Wild-
Docs only had it on for fixed size documents. However, we decided to enable this option for
all versions.

If the preference switch FIXEDSIZEDOCS is set to ON, the node’s bounds are set to a given
default fixed size, currently ISO A4:

[WDText.java | WDText(WildDocs,String,int)]

121 if (WildDocs.FIXEDSIZEDOCS == WildDocs.ON) {

124 setBounds(new WDUnitConverter(aWildDocs).wdToJava(DEFAULTSIZE));

108

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 109 — #111 i
i

i
i

i
i

4.2. Documents

We implemented behavior that adds new nodes if the loaded text does not fit onto one
single instance of WDText. We copied paint(PPaintContext) from PText and modified it at
three spots: Firstly, an if-clause at line 414 checks if fixed size documents are on. If yes,
the changed code is used; otherwise, the given PPaintContext is passed to the superclass at
line 457:15

[WDText.java | paint(PPaintContext)]

412 protected void paint(PPaintContext paintContext) {
413 super.paint(paintContext);
414 if (WildDocs.FIXEDSIZEDOCS) {
415 super.paint(paintContext);

456 } else {
457 super.paint(paintContext);
458 }
459 }

The other two modified parts are the initialization of the for loop at line 435 and the if-
clause at line 442:

[WDText.java | paint(PPaintContext)]

434 // The getLineOffset() is added for WildDocs instead of 0.
435 for (int i = getLineOffset() ; i < lines .length; i++) {
436 TextLayout tl = lines [i];
437 y += tl .getAscent();
438

439 if (bottomY < y) {
440

441 // This if−clause added for WildDocs.
442 if (getSuccessor() == NO_TEXT) {
443 createSuccessor(i);
444 }
445

446 return;
447 }

Originally, the for loop initialization was set to zero, which caused the node to display the
complete text, starting at its first line. Now, the changed code forces the node to display the
text with an offset. The offset results in one single text possibly being spread over several
nodes. Line 443 calls the creation of a new successor node with the current line offset as
argument. After the new node is created, it is set as successor:

[WDText.java | createSuccessor(int)]

466 private void createSuccessor(int aLineOffset) {
467 WDText nextPage = new WDText(getWildDocs(), getText(), aLineOffset);
468 nextPage.setBounds(this.getBounds());
469 setSuccessor(nextPage);
470 getWildDocs().addNodeToDesk(nextPage);
471 }

15This code calls super.paint(PPaintContext) more often than necessary. It could be cleaned up by either removing
line 415 and the else part at line 456–458, or by removing line 413.

109

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 110 — #112 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Because the successor node also calls paint(PPaintContext), the text may be split several
times. paint(PPaintContext) overrides the method of its superclass. It uses the private variable
lines. Because it is private, we had to create this variable for WDText and copy all parts
from PText that use this variable as well as any other private variable that is needed by these
but cannot be accessed from WDText. These are setFont(Font), recomputeLayout(), and the
constant EMPTY_TEXT_LAYOUT_ARRAY.

The code for splitting up and piping text among several documents is experimental and
still shows several problems. For example, the creation of the successor node is not done by
WDNodeFactory. Instead, it is directly coded in WDText. Also, the calculation is triggered
when a node is resized.16 However, the text does not flow through all connected nodes.
Important code for piping text is missing in WildDocs’s current version. Another possibility
to add the code and possibly less confusing would be to place it inside recomputeLayout(),
which is called from within paint(PPaintContext).17

Styled Text Styled text support in WildDocs is provided by WDStyledText. It extends Pic-
colo’s class PStyledText and supports RTF and HTML text formats. The constructor part
looks in many ways similar to the one in WDText. However, there are also some differences.
One is that it takes beside an URI that points to the file, also the file type as an argument,
represented as an integer:

[WDStyledText.java | WDStyledText(WildDocs,URI,int)]

158 public WDStyledText(WildDocs aWildDocs, URI aFileUri, int aType) {
159 this(aWildDocs, readDocument(aFileUri, aType));
160 }

The method readDocument(URI,int) loads the file as a string using WDTextLoader and
passes it either to readRtf(String) or readHtml(String), depending on whether it is classified
as RTF or HTML. Otherwise an error message appears.

A new JEditorPane is created with the appropriate MIME type and the given content as
string. getDocument() returns the document, which is an instance of Document (package
javax.swing.text):

[WDStyledText.java | readRtf(String)]

452 protected static Document readRtf(String aRtfDoc) {
453 return new JEditorPane("text/rtf " , aRtfDoc).getDocument();
454 }

The code for readHtml(String) (line 464–487) is equivalent to readRtf(String). However,
currently this works only for HTML files that have style information embedded. Support for
external style files or default values needs to be added in the future. Neither RTF nor HTML
support graphics in WildDocs. Despite the fact that it involves more development efforts, it
is not intended that instances of WDStyledText include images. WildDocs’s philosophy is to
create combinations of different media types by using bindings.

Similar to WDText, the returned Document instance together with the WildDocs instance is
then passed to another constructor, which passes them to a third constructor, adding NO_L|'
&|INEOFFSET to indicate that there is currently no line offset. The final constructor differs
16There are preference switches for fixed size documents and resizable documents. This is why fixed size documents

may be on (that is mandatory for enabling splitting of text nodes) while documents still can be resized.
17Adding it to recomputeLayout() was suggested by Jesse Grosjean in the mailing list posting at http://mailman.cs.

umd.edu/pipermail/piccolo-chat/2005/000669.html (visited on 2006-03-16).

110

http://mailman.cs.umd.edu/pipermail/piccolo-chat/2005/000669.html
http://mailman.cs.umd.edu/pipermail/piccolo-chat/2005/000669.html

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 111 — #113 i
i

i
i

i
i

4.2. Documents

de.atzenbeck.wilddocs.documents.adornments

edu.umd.cs.piccolo.nodes

de.atzenbeck.wilddocs

edu.umd.cs.piccolox.nodes

WDDeskImitation

PPath PComposite

«interface»
WDAdornment

«realize»

«realize»«realize»«realize»

WDShadowSurroundingWDShadowWDLowLevelDocBorder

Figure 4.5.: Adornments class diagram (package documents.adornments)

from the one in WDText, in that the document content is provided as Document, not as plain
text string. PStyledText does not have a constructor for passing documents. Therefore, WD|'
&|StyledText sets the document explicitly. There is also no support for greek threshold as
there is with PText. However, WDStyledText supports insets:

[WDStyledText.java | WDStyledText(WildDocs,Document,int)]

131 if (WildDocs.STYLEDTEXTINSETS) {
132 setInsets(WildDocs.INSETSVALUE);
133 }

If the preference switch for insets is on, default values for the inset are applied to the
document. This prevents bounds being right next to the document’s content.

The layout calculation that splits up a long text into several fixed sized nodes is taken from
paint(PPaintContext) in PStyledText and modified with additional code, equivalent to WDText.
However, because the required variable lines in PStyledText is protected, there was no need
to copy additional code to WDStyledText beside that, as we had to do with WDText.

Adornments

Adornments are visual add-ons without major support for spatial structuring. They are part
of the package de.atzenbeck.wilddocs.documents.adornments and implement the interface
WDAdornment, which has currently no content, but is used only for classifying objects as
adornments. Currently, node bounds and shadows are supported exclusively for low level
documents. Figure 4.5 depicts relationships of adornment classes, explained in the following
sections.

Border Line WildDocs’s border adornment (WDLowLevelDocBorder) extends Piccolo’s class
PPath and implements WDAdornment. Its constructor associates a given WDLowLevelDoc in-

111

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 112 — #114 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Figure 4.6.: Shadow and border line for low level documents; pile of ten documents (left) and
one single document (right)

stance and calls createBorder(). It is assumed that the associated document is rectangular. The
document’s x and y position as well as the width and hight are taken to create a new rectangle
with no paint, which is not pickable. Stroke type and color are taken from the preference
settings in WildDocs.

Currently, the surrounding appears as a thin line along the document’s bounds. Its main
purpose is to make it easier for the user to recognize the node’s border when being placed on
top of another one that has the same background color. This helps to estimate the number of
documents that are piled, in combination with sloppy alignment and shadows, as shown in
Fig. 4.6.

Shadow A shadow is a transparent rectangle behind a node, assuming that the node itself is
also rectangular. There are preference settings for color and level of transparency as well as
oversize and offset relative to its associated document. The oversize constant represents how
much the shadow is larger than its related document.

The shadow bounds are sharp, as Fig. 4.6 depicts. This is an easy and effective imple-
mentation for zooming; however, a fuzzy border would look more natural. Some graphics
application, such as OmniGraffle, allow the user to adjust the shadow fuzziness from sharp to
very smooth, beside changing offset, color, or transparency. Figure 2.26 on page 63 demon-
strates shadows with different attributes.

There are two classes that support shadows for low level document: WDShadow and WD|'
&|ShadowSurrounding. We will explain both in the following.

Shadow – Independent Shadow Our first implementation for shadow support was WD|'
&|Shadow. It extends Piccolo’s PPath and implements WDAdornment. It is neither added to
its related node nor bound together with it as children of a composite node. A newly created
shadow is put onto the space below all other existing nodes and exists there independent of
its siblings. A method in WildDocs triggers an update of all shadows:

[WildDocs.java | updateShadows()]

1513 public void updateShadows() {

112

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 113 — #115 i
i

i
i

i
i

4.2. Documents

1514 WDTempNodeStorage shadows = new WDTempNodeStorage();
1515 getLayer().getAllNodes(new ShadowFilter(), shadows);
1516

1517 if (! shadows.isEmpty()) {
1518 getLayer().removeChildren(shadows);
1519 }
1520

1521 if (SHADOW) {
1522 WDTempNodeStorage lowLevelDocs = new WDTempNodeStorage();
1523 getLayer().getAllNodes(new LowLevelDocFilter(), lowLevelDocs);
1524

1525 if (! lowLevelDocs.isEmpty()) {
1526 Iterator iterator = lowLevelDocs.iterator() ;
1527 while (iterator .hasNext()) {
1528 WDLowLevelDoc doc = (WDLowLevelDoc) iterator.next();
1529 getLayer().addChild(0, doc.updateShadow());
1530 }
1531 }
1532 }
1533 }

Firstly, all existing shadows are removed from the space at line 1518. If shadows are acti-
vated, an iterator iterates through a list of all WDLowLevelDoc instances. They are triggered
to update their shadows, and added to the current layer at the very bottom (line 1529). The
update on the node’s side is explained on page 107.

WDShadow’s constructor receives either an instance of WDDocument, or instances of Wild|'
&|Docs and PNode, which are also extracted from a given WDDocument. Beside setting the
associations, the shadow is painted and set to not pickable.

Drawing the shadow is performed by drawShadow(). It is based on the size and position
of the associated node. Converted offset preferences and oversizes are applied to it. Also
transparency, color, rotation, and scale are set. For placing the shadow correctly, the node’s
global coordinates are used:

[WDShadow.java | drawShadow()]

140 Point2D nodeGlobalCoord = node.localToGlobal(new Point2D.Double(node
141 .getX(), node.getY()));
142 Point2D shadowGlobalCoord = this.globalToLocal(nodeGlobalCoord);
143

144 float xPos = (float) shadowGlobalCoord.getX() − (oversize / 2);
145 float yPos = (float) shadowGlobalCoord.getY() − (oversize / 2);
146 float width = (float) node.getWidth() + oversize;
147 float height = (float) node.getHeight() + oversize;
148

149 setPathToRectangle(xPos, yPos, width, height);
150 translate (offsetX, offsetY) ;

This code snippet also takes care of distributing the oversize equally to the left and right as
well as at the top and bottom (starting at line 144), before drawing the rectangle at line 149,
and applying the offset at line 150.

Because the shadow is internally not connected to the associated document, it would not
follow the document when it is dragged. Therefore, the shadow is made invisible as soon as

113

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 114 — #116 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

the mouse button is pressed on its node:

[WDNodeInputEventHandler.java | mousePressed(PInputEvent)]

166 if (aEvent.getPickedNode() instanceof WDLowLevelDoc) {
167 ((WDLowLevelDoc) aEvent.getPickedNode()).setShadowVisible(false);
168 }

On mouse release, all shadows are updated, as discussed on page 112:

[WDNodeInputEventHandler.java | mouseReleased(PInputEvent)]

307 getWildDocs().updateShadows();

Currently, any action that is not caused by releasing the mouse button on a WDLowLevel|'
&|Doc does not automatically update the shadow; it stays where it was originally. Affected
are, for example, resizing a document or straightening a stack using CTRL-S. This should be
changed in a future version.

Shadow – Composite A more recent implementation is WDShadowSurrounding. It did not
find its place anywhere else in the used code yet, because it is in an early development stage.
It mainly differs from WDShadow by its superclass, behavior, and shadow creation.

WDShadowSurrounding extends Piccolo’s class PComposite and extends WDAdornment.
It takes the given document, creates shadow parts which surround it, and binds them together.
Now, when the document is moved, the shadow also moves with it. This has two obvious
changes in behavior or appearance: Firstly, the shadow does not have to be updated after
moving the document, because it follows the movement. Secondly, the shadow is not painted
at the very bottom and may appear on top of another document, depending on the node’s
index level.

The constructors are identical to those in WDShadow, but the shadow drawing differs: As
mentioned above, the shadow surrounds the document, from whence the class retrieved its
name. The method drawShadow() adds the the WDShadowSurrounding instance as child to
the document:

[WDShadowSurrounding.java | drawShadow()]

119 node.addChild(this);

Then, the method takes the document’s dimensions and oversizes and calculates the four
shadow rectangles. Finally, they are added to the composite node. In the current version,
offset calculation and oversize in millimeters do not work: Offset is switched off, and the
oversize preference variable has to be given in pixels. The following paradigmatic code shows
the calculation for the bottom shadow part:

[WDShadowSurrounding.java | drawShadow()]

149 float rect4xPos = (float) (nodeX − oversize);
150 float rect4yPos = (float) (nodeY + nodeHeight);
151 float rect4width = nodeWidth + (2 ∗ oversize);
152 float rect4height = oversize;

160 PPath rect4 = PPath.createRectangle(rect4xPos, rect4yPos, rect4width,
161 rect4height) ;

166 setPathAttributes(rect4) ;

171 addChild(rect4);

114

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 115 — #117 i
i

i
i

i
i

4.2. Documents

After the shadow part’s dimensions are calculated, a new PPath rectangle is created and
the attributes set. Then, the rectangle is added to the composite. The attributes are set by
setPathAttribute(PPath):

[WDShadowSurrounding.java | setPathAttributes(PPath)]

174 public void setPathAttributes(PPath aPath) {
175 aPath.setTransparency(WildDocs.SHADOWTRANSPARENCY);
176 aPath.setPaint(WildDocs.SHADOWCOLOR);
177 aPath.setStroke(null);
178 aPath.setPickable(false);
179 }

Because the document adds the composite node as a child, the latter automatically shows
the same global rotation than the document. Therefore, the shadow parts that are added as
children to the composite node fit around the document independent of its rotation.

There is no need to update this shadow type when moving a document, because document
and shadow are bound. This includes moving the document via shortcuts, for example, by
CTRL-S or rotating them. However, resizing the document does currently not include resiz-
ing the shadow around it. This needs to be implemented in a future version.

4.2.3. Bindings

Bindings are a spin-off of our core research. They were developed after we had the idea
that fixed size documents in combination with bindings may be used more effectively. This
follows the idea of having collection objects in spatial structure applications or binding tools,
such as folders, in the real world. Binding support is implemented in its basics. However,
important code is still missing, such as graphical representations.

Our implementation includes bindings (located in documents.bindings) and their binding
mechanisms (located in documents.bindings.mechanisms). We made this distinction, because
we aimed for easy implementation of new bindings and simple ways to attach appropriate
mechanisms to them. We divided the following in two sections, discussing both, bindings and
binding mechanisms. Figure 4.7 provides an overview of binding classes which are discussed
in the following.

It has to be clearly stated that bindings are in an early development state and not fully
functional, including mainly the graphical representation and everything that is closely related
to it. Nevertheless, we report our code so far to show our theoretical results at least partly
implemented. Even though not fully functional, most parts including central code pieces are
already finished.

Supported Types and Behavior

Common Behavior The core class for most bindings is WDBinding which extends Piccolo’s
PNode and implements WDDocument. The only exception is WDPrimitiveBinding which ex-
tends PPath instead. This exception will be discussed on page 127. WDBinding is an abstract
class and carries most of the behavior for bindings. Extending classes are mainly used for
setting arguments or minor extensions. This allows system developers to add new bindings
quickly and easily. The binding implementation is based on our real world analysis (see
especially Sect. 2.2.3).

115

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 116 — #118 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

de.atzenbeck.wilddocs.documents

de.atzenbeck.wilddocs.documents.bindings

java.lang edu.umd.cs.piccolo.nodesedu.umd.cs.piccolo

«interface»
WDDocument

«interface»
CloneablePNode PPath

«realize»

WDPrimitiveBinding

WDSheet WDPageWDDesk WDBook

WDBinding

Figure 4.7.: Bindings class diagram (package documents.bindings)

For easy use at all bindings classes, WDBinding defines a public constant for every imple-
mented binding class, for example:

[WDBinding.java | BOOK]

77 public static final Class BOOK = WDBook.class;

Most of the constructor’s arguments are constants that are passed from the extending class:

[WDBinding.java | WDBinding(WildDocs,Class[],Class[],double,double,Rectangle,int]

168 public WDBinding(WildDocs aWildDocs, Class[] someContainableDocTypes,
169 Class[] someDissolvingBindings, double aMaxThickness,
170 double aStaticThickness, Rectangle aSize, int aClipAlignment) {
171

172 // initialization
173 setWildDocs(aWildDocs);
174 setContainableDocTypes(someContainableDocTypes);
175 // setDependentOnBinding(aDependentOnBindingClass);
176 setDissolvingBindings(someDissolvingBindings);
177 setMaxThickness(aMaxThickness);
178 setStaticThickness(aStaticThickness);
179 setSize(aSize);
180 setClipAlignment(aClipAlignment);

188 setPickable(NOT_PICKABLE);
189 }

The initialization exclusively sets variables. Firstly, the WildDocs instance is associated,

116

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 117 — #119 i
i

i
i

i
i

4.2. Documents

then those classes of bindings that may be added, as well as bindings that dissolve when
added. The maximum thickness that is set at line 177 is needed to check whether there is
“space” left (metaphorical) for adding additional documents to the binding.

The static thickness that is set at the line below is the minimum thickness that the binding
has in any case, independent of its contents. If the maximum thickness is larger than the static
one, the binding may grow beyond its static thickness.

The setter for the binding’s size expects a rectangle with values in millimeter. Therefore,
the set method has to convert to the internal units using an instance of WDUnitConverter:

[WDBinding.java | setSize(Rectangle)]

289 protected void setSize(Rectangle aSize) {
290 WDUnitConverter converter = new WDUnitConverter(getWildDocs());
291 setBounds(converter.wdToJava(aSize));
292 size = aSize;
293 }

The clip alignment holds information about where the binding is added to other bindings
and how its alignment is supposed to be. The clip alignment is not used when documents are
added to this binding. Finally, the binding is set to be not pickable. This results in ignoring
mouse events that occur on the binding.

Bindings support front and back covers. In principle, any low level document can be used
as one of those. This code was implemented before we focused on an exclusive support
for bindings as structure elements. For later WildDocs versions, covers would be instances
of specialized bindings instead. All bindings with front and back cover associated can be
opened. Some bindings do not have a front cover, for example, trays. A back cover exist for
any binding; however, it may be invisible. This is the case for document piles that do not
represent the space graphically on which they are placed.

Setting a front cover begins with removing the old one, if existing:

[WDBinding.java | setFrontCover(WDLowLevelDoc)]

301 protected void setFrontCover(WDLowLevelDoc aFrontCover) {
302 if (getFrontCover() != NO_COVER) {
303 removeChild(getFrontCover().toPNode());
304 }
305 frontCover = aFrontCover;
306 if (getFrontCover() != NO_COVER) {
307 new WDNodeDragger(getBindingMechanism())
308 .dragToBindingMechanism(aFrontCover);
309 PNode cover = aFrontCover.toPNode();
310 addChild(cover);
311 cover.moveToFront();
312 }
313 }

Then, after the passed front cover is set, it is checked whether it has the value NO_COVER.
This would mean that there was no cover passed. Otherwise, if there is a cover, a new instance
of WDNodeDragger drags the front cover to the binding mechanism. Then, the cover is added
as child to the binding (not to the binding mechanism) and moved to the front.

The method setBackCover(WDLowLevelDoc) is equivalent to setting the front cover, but
uses moveToBack() instead of moveToFront() after adding the cover to the binding. Both

117

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 118 — #120 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

methods are provided by PNode. Currently, there is a problem with moving covers to the
back. This works only correctly if bindings are not turned.

Thickness is important for certain binding constraints. Some code exists already, but some
parts need to be added to have them fully functional and working correctly. Currently, WD|'
&|Binding has four thickness related methods partly implemented. The most important one
is getThickness(double), which returns the binding’s thickness, considering its static height:

[WDBinding.java | getThickness(double)]

555 public double getThickness(double staticHeight) {
556 // TODO add code
557 if (staticHeight > getThickness()) {
558 return staticHeight ;
559 } else {
560 return getThickness();
561 }
562 }

The thickness without considering the static height is calculated by getThickness():
[WDBinding.java | getThickness()]

539 public double getThickness() {
540 // TODO add code
541 double thickness = 0;
542 thickness = thicknessOfChildren() + getEmptyThickness();
543 return thickness;
544 }

It returns simply the sum of the thickness of all children plus the thickness of the binding
itself, including front and back cover. The method getEmptyThickness() is supposed to ignore
the static height, but lacks currently of content.

The thickness of a binder’s contents is calculated recursively:
[WDBinding.java | thicknessOfChildren()]

522 public double thicknessOfChildren() {
523 // TODO add code
524 double thicknessOfChildren = 0;
525

526 Iterator iterator = getChildrenIterator () ;
527 while (iterator .hasNext()) {
528 WDDocument doc = (WDDocument) iterator.next();
529 thicknessOfChildren += doc.getThickness();
530 }
531 return thicknessOfChildren;
532 }

Binding mechanisms are involved in binding documents to a binding. They will be dis-
cussed starting on page 129. The following code snippet is called when a binding mechanism
is associated to the binding:

[WDBinding.java | setBindingMechanism(WDBindingMechanism)]

343 protected void setBindingMechanism(WDBindingMechanism aBindingMechanism,
344 int aMechanismPosition) {
345 if (getBindingMechanism() != NO_BINDINGMECHANISM) {
346 removeChild(getBindingMechanism());

118

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 119 — #121 i
i

i
i

i
i

4.2. Documents

347 }
348 bindingMechanism = aBindingMechanism;
349 /∗
350 ∗ The binding mechanism becomes child of the binding. The graphical
351 ∗ representation of the mechanism is child of the mechanism.
352 ∗/
353 if (getBindingMechanism() != NO_BINDINGMECHANISM) {
354 WDBindingMechanism mechanism = getBindingMechanism();
355 addChild(mechanism);
356

357 /∗
358 ∗ Place the mechanism on the right place and also adjust the
359 ∗ position dependent rotation.
360 ∗/
361 Point2D posOnBinding = new WDBindingClipCalculator().position(this,
362 aMechanismPosition);
363 double rotation = new WDBindingClipCalculator()
364 . rotation (aMechanismPosition);
365 mechanism.rotate(rotation);
366 mechanism.centerFullBoundsOnPoint(posOnBinding.getX(), posOnBinding
367 .getY()) ;
368 }
369 }

Firstly, if a binding mechanism has already been associated, it will be removed at line 346.
The passed binding mechanism is then set. If it is not NO_BINDINGMECHANISM, it is also
added as child to the binding at line 355. Because the graphical representation of the binding
mechanism is attached to the binding mechanism, but not directly to the binding, it will now
appear on the screen. An instance of WDBindingClipCalculator calculates the correct position
and angle, and the mechanism’s location and rotation is adjusted to the correct values.

Physical bindings allow to leaf through their content. For example, pages of a book need to
be turned. This is relevant to the binding mechanism implementation, because this is where
documents have their fixed position. Originally, we planned to support a binding dimension
for each, source and destination. This would allow to move a document from one position
to another spot when turned. For example, a binder’s binding mechanism moves a turned
page several centimeters away. The binding dimension changes and the turned document is
suddenly “placed somewhere else”, as indicated in Fig. 4.8. This may include even different
binding dimension locations, for example, depending on the height of a binder’s filling, as
indicated in the previously mentioned figure. This does not affect all bindings, for example,
documents bound in books do not change their binding dimension position when being turned.
However, binding lines may differ among bound documents, for example, when a book’s
spine bows on turning pages, as implemented by (Chu et al., 2004, 80). An alternative to
source and destination binding dimension would be an offset for turned pages. However, this
would not allow to change the dimension type.18

The method isTurned() is supposed to return true if a binding is turned and false if not.
Because every binding has a back cover, the complete binding can be considered as being

18Changing the binding dimension when turning a document seems not to be useful from our current point of view.
At this time, we are not aware of an useful use case that shows that this would support the user.

119

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 120 — #122 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

40 mm

47 mm
50 mm

Current
binding
dimension
destination
(type: line)

Indicating
hidden
mechanism
part

Current
binding
dimension
source
(type: line)

Different distances
between source and
destination binding
dimension are
caused in this case
by partly conical
shaped mechanism.
(Maximum: 50 mm,
minimum: 40 mm,
current: 47 mm.)

Figure 4.8.: Binder with depicted source and destination binding dimension

turned if and only if the back cover is turned.19

[WDBinding.java | isTurned()]

492 public boolean isTurned() {
493 if (getBackCover() != NO_COVER) {
494 // FIXME refactor!!
495 // return getBackCover().isTurned();
496 return false;
497 } else {

504 return NOT_TURNED;
505 }
506 }

The original code can be seen at line 495. Changes on related parts within the code base
caused us to temporarily remove this line for compiling until refactoring the depending parts.

The way of turning a complete binding has changed during development. Figure 4.9 depicts
the reason. In an early development phase, contained documents were directly associated to
the binding. The binding mechanism was only responsible for the graphical representation
and involved in calculating the correct clip alignment. During time we put more responsibility
in binding mechanisms, following our observations from the real world. This decision was
supported by the fact that most behavior that is relevant for adding documents belong strongly
to the mechanism and not to binding instance directly, for example, opening or closing the
mechanism. Figure 4.9 draws lines between equivalent WildDocs associated binding parts of
the latter development and a depicted real world binder.

The code for turning a binding (line 589–604) is not adapted yet to the new architecture.
It still follows the earlier versions when contained documents were directly associated to the
19This said, we point out that this would not be true, if an open binding could be placed turned, with front and back

cover on top. This is not supported by WildDocs.

120

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 121 — #123 i
i

i
i

i
i

4.2. Documents

Front Cover

Back Cover

Document A

Document B

Document CM
ec

ha
ni

sm

Bi
nd

in
g

Front Cover

Back Cover

Document A

Document B

Document C

Bi
nd

in
g

M
ec

ha
ni

sm

Development State 1 Development State 2

Figure 4.9.: Binding associations in early and late development, and depicted real world
equivalent

binding. It creates an iterator20 that iterates through all children of the binding and turns them
recursively:

[WDBinding.java | turn()]

589 public void turn() {

595 Iterator iterator = new HashSet(getChildrenReference()).iterator();
596 while (iterator .hasNext()) {
597 Object child = iterator .next() ;
598 if (child instanceof WDDocument) {
599 WDDocument docChild = (WDDocument) child;
600 docChild.turn() ;
601 docChild.toPNode().moveToFront();
602 }
603 }
604 }

The if-clause at line 598 prevents any other node than documents to be turned, for example,
binding mechanisms. After turned, the document is put to the very front.

Browsing a binding page by page is an essential behavior for WildDocs users. WD|'
&|Binding has already two methods for this, pageForward(WDDocument) (line 571–573) and
pageBackward(WDDocument) (line 580–582). However none of them has content yet.

Bindings have two methods related to removing items. One is to completely remove the
binding including its content; the other is to destroy the binding, but not its content. To
remove everything, the method trash() calls removeFromParent(), which is provided by the
20The iterator iterates through a newly created HashSet that contains the binding’s children. The hash set is used to

avoid ConcurrentModificationException errors during runtime.

121

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 122 — #124 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

superclass PNode. Removing the binding without its content calls the relevant method at the
associated WDBindingMechanism instance:

[WDBinding.java | emptyAndTrash()]

611 public void emptyAndTrash() {
612 getBindingMechanism().emptyAndTrashBinding();
613 }

For many bindings, this action is not required, because the binding mechanism can be
opened and the content removed before calling trash() on the empty binding. However, some
binding types, such as BOOK, do not allow opening the binding mechanism once it is bound.
This represents a “final” state and must be destroyed if the user wishes to use its content
differently. emptyAndTrash() performs exactly this step: The binding mechanism is forced to
open and therefore semantically destroyed, whereupon the binding including its mechanism
is immediately trashed. Only its content remains and can be bound again. We discuss this
method in more detail on page 133.

Like in all other extensions of WDDocument, there are methods for returning the binding
as casted PNode (toPNode()), its index path (index()), or to compare its index path to another
document (compareTo(WDDocument).

In the following, we discuss current implementations of bindings. They extend WD|'
&|Binding. Because of the rich implementation of the abstract WDBinding class, the code
bases for concrete WildDocs bindings are rather small. Only those attributes need to be
changed that differ from those in WDBinding. This demonstrates the possibility of building
new binding classes with ease.

Desk Instances of the class WDDesk represent desk metaphors. A desk can hold documents
and therefore is considered in WildDocs as a binding. This differs from the desk imitation as
discussed in Sect. 4.1.4. Like for all other binding classes, the top part of the code contains
assignments for four constants. The first one defines that only books and sheets can be placed
on a desk:

[WDDesk.java | CONTAINABLE_DOCTYPES]

50 private static final Class[] CONTAINABLE_DOCTYPES = { BOOK, SHEET };

All other existing binding types cannot be added to a desk (currently pages and desks). The
role of pages will be discussed later. The case that desks do not occur in CONTAINABLE_|'
&|DOCTYPES prevents that a user piles desks, which would be realistic only when moving
furniture and a metaphor break otherwise.

DISSOLVING_BINDINGS is used to declare types of bindings that dissolve when added
(see discussion on page 46); however, this is empty for desks: We are not aware of any
binding that would dissolve when added to a desk. CLIPALIGNMENT and MECHANISM|'
&|POSITION are set to CENTER. The clip alignment represents where the desk would clip
onto a binding mechanism. Because currently a desk cannot be part of a binding, this value
is without meaning and only added because it is requested by the superclass constructor. The
mechanism position carries information about where the clip alignment of a document that is
added to the desk will be put to. In this case, it is the center of the desk.

The constructor takes beside the WildDocs instance also the desk’s color and size:

[WDDesk.java | WDDesk(WildDocs,Paint,Rectangle]

66 public WDDesk(WildDocs aWildDocs, Paint aColor,

122

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 123 — #125 i
i

i
i

i
i

4.2. Documents

67 Rectangle aSize) {
68

69 super(aWildDocs, CONTAINABLE_DOCTYPES, DISSOLVING_BINDINGS, |'
&|NO_THICKNESS,

70 NO_STATICTHICKNESS, aSize, CLIPALIGNMENT);
71

72 // set binding mechanism
73 setBindingMechanism(new WDDeskMechanism(this, aSize, aColor), |'

&|MECHANISMPOSITION);
74 }

The WildDocs instance, all potential contained and dissolved dissolution binding types, the
given size, and the clip alignment, as well as the information that the desk instance neither
has a thickness nor a static thickness, are passed to the superclass WDBinding. The thickness
of a desk is irrelevant, because at the current version, a desk cannot be contained by any other
binding. This information is passed only because it is required by the superclass’s constructor.

A new instance of WDDeskMechanism is created by passing the desk, its size, and the
given color. The binding mechanism is set to the center of the desk, as defined by the constant
earlier.

Turning a desk is realistically not used as an action in knowledge work. Therefore the
method turn() in WDDesk overrides the one in its superclass and only prints a message that
informs that a desk cannot be turned.

Book Instances of the class WDBook accept only sheets (WDSheet) as contents:
[WDBook.java | CONTAINABLE_DOCTYPES]

55 private static final Class[] CONTAINABLE_DOCTYPES = { SHEET };

Sheets do not dissolve when bound by a book. Therefore, the constant DISSOLVING_B|'
&|INDINGS remains empty. The clip alignment is set to CENTER, the mechanism position is
on the left side of the book. Currently, a book can only be added to the desk. Therefore, the
clip alignment is of less importance. The code may be changed in a way that a book below a
certain thickness level may be also added to a binder. In this case, the clip alignment would
be at the book’s left side.

WDBook sets the thickness of its front (FRONTCOVERTHICKNESS) and back cover (BA|'
&|CKCOVERTHICKNESS) to 3 mm each. The default maximum thickness (STANDARD|'
&|MAXTHICKNESS) is set to 100, assuming that books would be not thicker than 100 mm.
However, maximum thickness is currently not used.

The constructor requests a WildDocs instance, a value for its maximum thickness, as well
as color, and size:

[WDBook.java | WDBook(WildDocs,double,Paint,Rectangle)]

89 public WDBook(WildDocs aWildDocs, double aMaxThickness, Paint aColor,
90 Rectangle aSize) {
91

92 super(aWildDocs, CONTAINABLE_DOCTYPES, DISSOLVING_BINDINGS,
93 aMaxThickness, NO_STATICTHICKNESS, aSize, CLIPALIGNMENT);
94

95 // set binding mechanism
96 setBindingMechanism(new WDBookMechanism(this), MECHANISMPOSITION);
97

123

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 124 — #126 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

98 // set cover
99 setFrontCover(new WDBindingCover(getWildDocs(), aSize, aColor,

100 FRONTCOVERTHICKNESS));
101 setBackCover(new WDBindingCover(getWildDocs(), aSize, aColor,
102 BACKCOVERTHICKNESS));
103 }

Most of the given information is passed to the superclass at line 92 and 93. The constant
NO_STATICTHICKNESS is given to indicate that a book does not have a static thickness. Its
thickness equals the sum of its parts.

After associating a new WDBookMechanism at line 96, a new front and a back cover is
created, passing the WildDocs instance as well as the size, color, and the appropriate cover
thickness. The use of WDBindingCover is still following an early approach in development,
before we raised bindings to main structure elements, as discussed on page 106. Here, a
binding cover is a low level document and should be replaced in future versions with an
appropriate binding, such as WDSheet.

Sheet Instances of WDSheet represent the equivalent of what we know as sheets of paper
in the real world. A sheet has two sides, a front and a back page. This is represented in Wild-
Docs as contents of a sheet. Therefore, a sheet itself must be a binding. The only instances
that a sheet can take are pages:

[WDSheet.java | CONTAINABLE_DOCTYPES]

54 private static final Class[] CONTAINABLE_DOCTYPES = { PAGE };

Pages stay pages when added. There is no dissolving behavior. The constant DISS|'
&|OLVING_BINDINGS is empty. Clip alignment as well as mechanism position are set to
CENTER. It cannot be predicted where a sheet is added, therefore the given clip alignment
is only one of several possibilities. CENTER would be appropriate for adding a sheet on the
desk, whereas it would have to be changed to LEFT when adding a sheet to a binder or book
that have their mechanism position on the right hand side.21 The mechanism position set to
center works fine, since pages are of equal size and attached right behind of each other. The
standard thickness of a sheet is currently set to 51.5

500 mm (= 0.103 mm), assuming that 500
sheets create a pile of 51.5 mm height:

[WDSheet.java | STANDARDTHICKNESS]

80 public static final double STANDARDTHICKNESS = 51.5 / 500;

The constructor takes the same attributes as a book’s constructor:22

[WDSheet.java | WDSheet(WildDocs,double,Paint,Rectangle)]

90 public WDSheet(WildDocs aWildDocs, double aThickness, Paint aColor,
91 Rectangle aSize) {
92

93 super(aWildDocs, CONTAINABLE_DOCTYPES, DISSOLVING_BINDINGS, aThickness,
94 NO_STATICTHICKNESS, aSize, CLIPALIGNMENT);
95

96 // set binding mechanism

21This applies only if the writing direction is from left to right. For example, for the opposite writing direction (e. g.,
Arabic or Hebrew), the clip alignment would be set to RIGHT.

22The variable aThickness should be named aMaxThickness in order to avoid misunderstandings.

124

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 125 — #127 i
i

i
i

i
i

4.2. Documents

97 setBindingMechanism(new WDSheetMechanism(this), MECHANISMPOSITION);
98

99 getBindingMechanism().addDocument(new WDPage(getWildDocs(), getMaxThickness() / 2,|'
&| aColor, aSize));

100

101 getBindingMechanism().addDocument(new WDPage(getWildDocs(), getMaxThickness() / 2,|'
&| aColor, aSize));

102 }

Most attributes are passed to the superclass. Also, a sheet does not have a thickness by
itself. Its thickness is derived from the sum of its containing pages.

A new WDSheetMechanism is created and set (line 97), and the front and back page are
associated at line 99 and 101. A sheet binding cannot be opened from the outside. Exactly
two pages are added. This prevents of having more or less than two pages, which would be
a violation of the sheet metaphor. For the construction of WDPage, we pass, among other
attributes, the maximum thickness divided by two as well. This is received by WDPage as the
thickness of the page. The reason for this is to simplify the setting of thickness at that point
and make it more understand to humans. In the real world, most humans dealing with paper
have an understanding of a sheet’s thickness. However, there is no notion of how thick the
front or back side of a sheet is. An alternative, possibly easier to understand, would be that
WDSheet sets the given thickness and passes zero to its pages instead.

Page Pages, represented by instances of WDPage, are exclusively to be added to sheets.
One page represents either a front or a back side of a sheet. They can hold instances of
WDLowLevelDoc:

[WDPage.java | CONTAINABLE_DOCTYPES]

54 private static final Class[] CONTAINABLE_DOCTYPES = { LOWLEVELDOC };

In future versions, it may be possible that a page receives similar features that we know
from word processing or desktop publishing applications. Different media types may be
added and moved around. However, low level documents are not necessarily the only docu-
ment types that may be added to pages in the future.

We can think of a binding class, that can be added to a page, for example, to be used as a
“floating binding”, containing a picture or table and its caption text. Other examples would be
bindings that divide one page into sub-parts. Figure 4.10 depicts an example of five low level
documents, three of them contained by a sub-binding (“Text body”). An important feature for
such use cases would be dynamic piping of text from one to an other column, that is, from one
low level document to the other in this case. Alternatively, this could be implemented using
binding types that contain the complete textual low level document and take care of the split
up representations. Such a binding type would be conceptually dividing the inner structure
and the graphical representation.

From a user’s perspective, binding low level documents on a page goes toward “group-
ing” features of chart applications; however, WildDocs is designed to offer special behavior
underneath.

WDPage has constants for visible (VISIBLE) and invisible (INVISIBLE), which are used
for turning documents. Clip alignment and binding mechanism position are set to CENTER.
Because there are currently no bindings that can be added, the list for dissolving bindings is
empty.

125

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 126 — #128 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Goethe – Die Leiden de jungen Werther
Quelle: Projekt Gutenberg, URL: <http://gutenberg.spiegel.de/goethe/werther/1wert001.htm>

Seite 1
Erstellt: Wed May 03 2006

Wie froh bin ich, daß ich weg bin! Bester Freund,
was ist das Herz des Menschen! Dich zu ver-
lassen, den ich so liebe, von dem ich unz-
ertrennlich war, und froh zu sein! Ich weiß, du
verzeihst mir's. Waren nicht meine übrigen
Verbindungen recht ausgesucht vom Schicksal,
um ein Herz wie das meine zu ängstigen? Die
arme Leonore! Und doch war ich unschuldig.
Konnt' ich dafür, daß, während die eigensinnigen
Reize ihrer Schwester mir eine angenehme Un-
terhaltung verschafften, daß eine Leidenschaft in
dem armen Herzen sich bildete? Und doch - bin
ich ganz unschuldig? Hab' ich nicht ihre Empfind-
ungen genährt? Hab' ich mich nicht an den ganz
wahren Ausdrücken der Natur, die uns so oft zu
lachen machten, so wenig lächerlich sie waren,
selbst ergetzt? Hab' ich nicht - o was ist der
Mensch, daß er über sich klagen darf! Ich will,
lieber Freund, ich verspreche dir's, ich will mich
bessern, will nicht mehr ein bißchen Übel, das
uns das Schicksal vorlegt, wiederkäuen, wie ich's
immer getan habe; ich will das Gegenwärtige ge-
nießen, und das Vergangene soll mir vergangen
sein. Gewiß, du hast recht, Bester, der
Schmerzen wären minder unter den Menschen,
wenn sie nicht - Gott weiß, warum sie so
gemacht sind! - mit so viel Emsigkeit der Einbil-
dungskraft sich beschäftigten, die Erinnerungen
des vergangenen Übels zurückzurufen, eher als
eine gleichgültige Gegenwart zu ertragen.

Du bist so gut, meiner Mutter zu sagen, daß ich
ihr Geschäft bestens betreiben und ihr ehstens
Nachricht davon geben werde. Ich habe meine
Tante gesprochen und bei weitem das böse Weib
nicht gefunden, das man bei uns aus ihr macht.
Sie ist eine muntere, heftige Frau von dem
besten Herzen. Ich erklärte ihr meiner Mutter
Beschwerden über den zurückgehaltenen Erb-
schaftsanteil; sie sagte mir ihre Gründe, Ur-
sachen und die Bedingungen, unter welchen sie
bereit wäre, alles herauszugeben, und mehr als
wir verlangten - kurz, ich mag jetzt nichts davon
schreiben, sage meiner Mutter, es werde alles
gut gehen. Und ich habe, mein Lieber, wieder bei
diesem kleinen Geschäft gefunden, daß Mißver-
ständnisse und Trägheit vielleicht mehr Irrungen
in der Welt machen als List und Bosheit. Wenig-
stens sind die beiden letzteren gewiß seltener.

Übrigens befinde ich mich hier gar wohl. Die Ein-
samkeit ist meinem Herzen köstlicher Balsam in
dieser paradiesischen Gegend, und diese
Jahreszeit der Jugend wärmt mit aller Fülle mein
oft schauderndes Herz. Jeder Baum, jede Hecke
ist ein Strauß von Blüten, und man möchte zum
Maienkäfer werden, um in dem Meer von
Wohlgerüchen herumschweben und alle seine
Nahrung darin finden zu können.

Header
(low level doc)

Footer
(low level doc)

Text column 1
(low level doc)

Image
(low level doc)

Text body
(binding)

Text column 2
(low level doc)

Figure 4.10.: Example of a page with a mix of binding and low level documents

The constructor is similar to the first part of the WDSheet constructor:
[WDPage.java | WDPage(WildDocs,double,Paint,Rectangle)]

70 public WDPage(WildDocs aWildDocs, double aThickness, Paint aColor,
71 Rectangle aSize) {
72

73 super(aWildDocs, CONTAINABLE_DOCTYPES, DISSOLVING_BINDINGS, aThickness,
74 NO_STATICTHICKNESS, aSize, CLIPALIGNMENT);
75

76 // set binding mechanism
77 setBindingMechanism(new WDPageMechanism(this, aSize, aColor), |'

&|MECHANISMPOSITION);
78 }

Firstly, known attributes are passed to the superclass WDBinding. The current code shows
an error at line 74, where equivalent to WDSheet the constant NO_STATICTHICKNESS is
passed. However, the static value has to be the same as the maximum thickness, passed
from WDSheet by the variable aThickness. The reason is that currently a page is the last
possible binding. Low level documents that may be placed on pages do have zero thickness.
Even bindings that may be added in the future, as mentioned above, will probably not have a
thickness. Because WDSheet passes the responsibility of carrying the information about the
thickness to both pages, they need to set it as static thickness. Alternatively, as mentioned on
the previous page, WDSheet could set the static thickness instead; in this case, the code at
line 74 would be correct.

Finally, a binding mechanism of the type WDPageMechanism is created at line 77, passing
the binding, its size and color.

Turning a sheet results in showing the opposite page and hiding the previous one. There is
a special case for pages, therefore, we override WDBinding’s turn() method:

[WDPage.java | turn()]

86 public void turn() {
87 if (getVisible () == VISIBLE) {
88 setVisible (INVISIBLE);

126

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 127 — #129 i
i

i
i

i
i

4.2. Documents

89 } else {
90 setVisible (VISIBLE);
91 }
92 }

This sets a visible page invisible and vice versa. The turn() of WDBinding will turn all sub-
bindings recursively, except for WDPage instances: When a sheet is triggered to turn, it will
send a turn request to both pages that are associated. The one visible will become invisible
and the opposite side is displayed instead.

Out of Turn: Primitive Bindings Primitive bindings are supported by WDPrimitiveBinding,
which implements WDDocument. However, it does not extend WDBinding, but Piccolo’s class
PPath instead. In contrast to the more complex bindings of the WDBinding group, primitive
bindings are – as the name suggests – primitive in appearance and behavior. They were
developed recently to provide a simple binding object that allows putting documents on it and
lets them move simultaneously while moving the binding. The binding is represented as a
rectangle. This is similar to a blotting pad on which paper is placed and that can be moved
while all objects follow its movement.

If the preference switch for primitive bindings is on, there is a menu entry “Primitive Bind-
ing” at the menu “Bindings” that lets the user create an instance that is put onto the WildDocs
space. Alternatively, CTRL-B can be used (see Fig. 4.17 on page 154).

There are four constructors starting with WDPrimitiveBinding(WildDocs) as the least com-
plex one. Unknown attributes, such as width, height, color, or x or y positions are replaced by
predefined values, and passed to the next constructor. The following code snippet shows the
final constructor:

[WDPrimitiveBinding.java | WDPrimitiveBinding(WildDocs,float,float,float,float,Paint)]

109 public WDPrimitiveBinding(WildDocs aWildDocs, float aXpos, float aYpos,
110 float aWidth, float aHeight, Paint aColor) {
111 super();
112 setWildDocs(aWildDocs);
113

114 WDUnitConverter conv = new WDUnitConverter(aWildDocs);
115 float width = (float) conv.wdToJava(aWidth);
116 float height = (float) conv.wdToJava(aHeight);
117 setPathToRectangle(aXpos, aYpos, width, height);
118 setPaint(aColor);
119

120 addInputEventListener(new WDNodeInputEventHandler(aWildDocs));
121 }

The first part of the constructor includes setting the passed WildDocs and creating a new
WDUnitConverter instance. Then, width and height are converted from millimeters to pixels.
A rectangle is created by the given x and y position, width, and height. The color is set and
a new input event listener is instantiated. Primitive bindings use the same event handler than
low level documents (WDNodeInputEventHandler).

Primitive bindings are not associated to binding mechanisms. Therefore, the method set|'
&|ParentBindingMechanism(WDBindingMechanism) does not have any content and get|'
&|ParentBindingMechanism() returns null. The method getClipAlignment() currently returns

127

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 128 — #130 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

the given default alignment and getThickness() returns zero. Neither clip alignment nor thick-
ness are currently used. Turning a primitive binding via turn() is not possible and returns an
error message. Calling trash() simply removes the primitive binding from its parent node.
Bound documents are not put away and therefore are deleted as well. Other methods required
by the interface WDDocument are toPNode(), index(), or compareTo(WDDocument). Those
are identical to most existing implemented document classes in WildDocs.

There are methods for documents or generic nodes. A given document is casted to PNode
and passed to the appropriate method:

[WDPrimitiveBinding.java | addDocument(WDDocument)]

177 public void addDocument(WDDocument aDoc) {
178 addNode(aDoc.toPNode());
179 }

The method addNode(PNode) simply adds the given node as child to the primitive binding:

[WDPrimitiveBinding.java | addNode(PNode)]

186 public void addNode(PNode aNode) {
187 addChild(aNode);
188 }

Adding a node that is dragged onto a primitive binding is planned to be triggered on mouse
release:

[WDNodeInputEventHandler.java | mouseRelease(PInputEvent)]

283 if (WildDocs.PRIMITIVEBINDINGS) {
284 WDTempNodeStorage primitiveBindings = new WDTempNodeStorage(
285 getWildDocs().getLayer().getAllNodes());
286 primitiveBindings .remove(activeNode);
287 primitiveBindings
288 .keepFiltered(new PrimitiveBindingFilter ()) ;
289 primitiveBindings .keepFiltered(new SmallerNodeIndexFilter(
290 activeNode));
291 primitiveBindings .keepFiltered(new IntersectionFilter (
292 activeNode));
293

294 if (primitiveBindings .isEmpty()
295 && activeNode.getParent() instanceof WDPrimitiveBinding) {
296 getWildDocs().getLayer().addChild(activeNode);
297 } else {
298 // primitiveBindings .getHighestIndexNode().addChild(node);
299 ((WDPrimitiveBinding) primitiveBindings
300 .getHighestIndexNode()).addNode(activeNode);
301 }
302 }

The idea is to create a new temporary node storage object that contains all nodes, remove
the active node, and keep only those primitive bindings that are below and intersect with the
active node. The if-clause at line 294 checks if there are primitive bindings left. If not and the
dragged node is bound by a primitive binding, it will be released from the primitive binding
by adding it to the layer. Otherwise, it would be added to the primitive binding. If two or more
primitive bindings are below the cursor at mouse release, the binding with the highest index

128

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 129 — #131 i
i

i
i

i
i

4.2. Documents

de.atzenbeck.wilddocs.documents.bindings.mechanisms

edu.umd.cs.piccolo.nodes

PPath

WDBindingMechanism

WDBookMechanismWDDeskMechanism WDPageMechanism WDSheetMechanism

WDBindingPointMechanismWDBindingAreaMechanism WDBindingLineMechanism

Figure 4.11.: Binding mechanisms class diagram (package documents.bindings.mechanisms)

level (among those that are left in the temporary storage object) is the one that is directly
below the active node, and the one that will take the node.

This implementation works. However, problems with suddenly misplaced nodes occur
after moving them onto a primitive binding and releasing the mouse button. This is probably
caused by problems with moving the active node from one parent’s coordinate system to
another parent’s. This incorrect behavior as well as the fact that we did not use bindings
for our usability test were the reasons that we left out binding relevant code at the compiled
version, including complex and primitive binding behavior that would be triggered on mouse
release.

Binding Mechanisms

Binding mechanism related classes can be found in package documents.bindings.mechanisms.
As Fig. 4.9 on page 121 depicts, we have changed binding mechanisms from a binding add-
on to the class that is responsible for holding documents. This affects the set of methods for
mechanisms essentially. In an earlier state, an instance of WDBindingMechanism was also the
graphical representation. We changed this to be more flexible. In the current implementation,
we associate the graphical representation, which can be any PNode instance. However, the
inheritance still shows the former implementation: the abstract class WDBindingMechanism
extends Piccolo’s PPath, a class that wraps Java’s GeneralPath (package java.awt.geom). It
can be used to draw lines.

There are several classes that extend WDBindingMechanism. Figure 4.11 depicts the inher-
itances. We will discuss them in the following.

WDBindingMechanism introduces some constants. Some of them define a default state or
value. For example, by default, the binding mechanism is open at creation time through DE|'
&|FAULTOPENSTATE set to OPEN. The default binding clip alignment is set to CENTER.
Two constants are related to rotation: NO_ROTATION is set to zero and FULLROTATION is
set to 360 degrees.

129

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 130 — #132 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

The constructor takes and sets a binding instance, information whether the mechanism can
be opened, the clip alignment to note where documents are added to the mechanism, as well
as the maximum rotation and offset that may be applied to a document when added.

[WDBindingMechanism.java | WDBindingMechanism(WDBinding,boolean,int,double,double)]

110 public WDBindingMechanism(WDBinding aBinding, boolean ifOpenable,
111 int aClipAlignment, double aMaxRotation, double aMaxOffset) {
112 setBinding(aBinding);
113 setOpenable(ifOpenable);
114 setClipAlignment(aClipAlignment);
115 setMaxRotation(aMaxRotation);
116 setMaxOffset(aMaxOffset);

125 forceOpen();

127 }

The method at line 125 forces the binding to open. The method open() is not suitable for
bindings that are set to be non-openable, because it will not open them. However, in the
beginning, they need to open a single time in order to fill them with documents. The method
forceOpen() forces any binding to open:

[WDBindingMechanism.java | forceOpen()]

272 protected void forceOpen() {
273 boolean lastOpenableState = isOpenable();
274 setOpenable(OPENABLE);
275 open();
276 setOpenable(lastOpenableState);
277 }

It sets information about whether a mechanism may be opened temporarily to OPENABLE,
opens the mechanism, and resets its status to the original value. The binding is now open;
however, as soon as it is closed, it cannot be opened again using open().

The method open() calls open(PNode) with NO_GRAPHICS as parameter:
[WDBindingMechanism.java | open(PNode)]

291 public void open(PNode aGraphics) {
292 if (isOpenable() == OPENABLE) {
293 if (isOpen() != OPEN) {
294 setOpen(OPEN);
295 if (aGraphics == NO_GRAPHICS) {
296 updateGraphicalRepresentation();
297 } else {
298 updateGraphicalRepresentation(aGraphics);
299 }
300 } else {
301 System.out.println("This binding mechanism is already open.");
302 }
303 } else {
304 System.err.println ("This binding mechanism cannot be opened.");
305 }
306 }

Firstly, it checks if the binding mechanism is supposed to be opened. If not, an error
message will be sent. If it is openable and the mechanism is already opened, WildDocs will

130

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 131 — #133 i
i

i
i

i
i

4.2. Documents

inform the user about this state. Otherwise, its state is set to OPEN and the mechanism’s
graphical representation is updated. If NO_GRAPHICS was passed, the existing graphical
representation is updated by sending it as attribute to the update method:

[WDBindingMechanism.java | updateGraphicalRepresentation()]

341 public void updateGraphicalRepresentation() {

346 updateGraphicalRepresentation(getGraphicalRepresentation());
347 }

This calls the same method than if a graphical representation would have been passed to
the open method in first place:

[WDBindingMechanism.java | updateGraphicalRepresentation(PNode)]

355 public void updateGraphicalRepresentation(PNode aGraphics) {
356 // set the graphical stuff
357 if (getGraphicalRepresentation() != NO_GRAPHICS) {
358 removeChild(getGraphicalRepresentation());
359 }
360 setGraphicalRepresentation(aGraphics);

366 if (getGraphicalRepresentation() != NO_GRAPHICS) {
367 PNode graphics = getGraphicalRepresentation();

370 addChild(graphics);
371 }
372 }

Line 358 removes an existing graphical representation. Then, the passed attribute is set,
which can be either a PNode instance or NO_GRAPHICS. If there is a PNode instance passed,
it will be added as child to the binding mechanism (line 370) in order to have the graphical
representation visible on the screen.

Closing a binding mechanism is equivalent to opening. The method close() calls close(|'
&|PNode) with NO_GRAPHICS as attribute:

[WDBindingMechanism.java | close(PNode)]

320 public void close(PNode aGraphics) {
321 if (isOpen() != CLOSED) {
322 setOpen(CLOSED);

327 setOpenable(NOT_OPENABLE);
328 if (aGraphics == NO_GRAPHICS) {
329 updateGraphicalRepresentation();
330 } else {
331 updateGraphicalRepresentation(aGraphics);
332 }
333 } else {
334 System.out.println("This binding mechanism is already closed.");
335 }
336 }

If the binding mechanism is already closed, a warning message will be displayed. Oth-
erwise, its open state is set to CLOSE and the graphical representation becomes updated, as
discussed on this page. Setting the openable flag generally to NOT_OPENABLE at line 327 is
an error in the used code base. For example, binders that should open multiple times would

131

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 132 — #134 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

not allow opening after they were closed the first time. Therefore, this line needs to be deleted
in a future version.

WDBindingMechanism supports adding a single document as well as a range of documents.
A given single document is wrapped into a list and sent to addDocuments(ArrayList):

[WDBindingMechanism.java | addDocument(WDDocument)]

382 public void addDocument(WDDocument aDocument) {
383 // FIXME DELETE THIS LINE! FOR TESTING ONLY!!
384 forceOpen();
385 ArrayList docList = new ArrayList();
386 docList.add(aDocument);
387 addDocuments(docList);
388 }

Line 384 remained from testing the prototype’s functionality without taking care of open
locks that some bindings have. This line has to be deleted in a future version.

[WDBindingMechanism.java | addDocuments(ArrayList)]

396 public void addDocuments(ArrayList someDocuments) {
397 if (isOpen() == OPEN) {
398 Iterator iterator = someDocuments.iterator();
399 while (iterator .hasNext()) {
400 WDDocument doc = (WDDocument) iterator.next();

407 addChild(doc.toPNode());
408

409 // Let the document know who its binding is.
410 doc.setParentBindingMechanism(this);

419 new WDNodeDragger(this).dragToBindingMechanism(doc);
420 }
421 } else {
422 System.err
423 . println ("Cannot add document(s), because binding is not open.");
424 }
425 }

Before adding a list of documents, the method tries to open the binding mechanism and
checks if it is is open afterwards. If not, an error will be displayed. Then, an iterator iterates
through the list, adding each document as a child to the mechanism and associating the mech-
anism at the document’s side.23 Finally, a new WDNodeDragger instance drags the node to
an appropriate position. This supports the user in adding documents.

Removing documents from a binding works equivalent to adding. If a single document
is passed to removeDocument(WDDocument), it is wrapped into a list, which is passed as
argument to the method removeDocuments(ArrayList):

[WDBindingMechanism.java | removeDocuments(ArrayList)]

444 public void removeDocuments(ArrayList someDocuments) {
445 if (isOpen() == OPEN) {
446 Iterator iterator = someDocuments.iterator();
447 while (iterator .hasNext()) {

23To avoid errors during runtime, it would be more secure to check if the individual object is an instance of WD|'
&|Document before casting at line 400.

132

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 133 — #135 i
i

i
i

i
i

4.2. Documents

448 WDDocument doc = (WDDocument) iterator.next();
449 getBinding().getWildDocs().addNodeToDesk(doc);

454 }
455 } else {
456 System.err
457 . println ("Cannot remove document(s), because binding is not open.");
458 }
459 }

Also here, the method first tries to open the binding mechanism and returns an error mes-
sage if it is not open afterwards. Otherwise, an iterator steps through the passed list and adds
the documents individually to the desk.24 This makes clear that removing is not equivalent to
trash(), which removes a document completely from the space.

There is a method that removes all children of a binding:
[WDBindingMechanism.java | removeAllDocuments()]

465 public void removeAllDocuments() {
466 ArrayList children = new ArrayList(getChildrenReference());
467 children .remove(getGraphicalRepresentation());
468 removeDocuments(children);
469 }

The method gets all children of a binding mechanism, puts them in a list, and removes the
graphical representation from it. Then, it calls removeDocuments(ArrayList), passing the list
as attribute.

A binding can be removed from the space by calling trash() on it. This removes front and
back cover, binding mechanism, and contained documents. If a user wants to trash a binding
but keep the contained documents, he/she can open the mechanism and remove the complete
content before calling the binding’s trash method. However, this is only possible for bindings
that have mechanisms that can be opened. For example, a book cannot be opened. We have
implemented the method emptyAndTrashBinding() for those cases. It follows the metaphor of
destroying the binding to free its content:

[WDBindingMechanism.java | emptyAndTrashBinding()]

476 public void emptyAndTrashBinding() {
477 forceOpen();
478 removeAllDocuments();
479 getBinding(). trash () ;
480 }

Firstly, the binding is forced to open. Then, all documents are removed as described above.
Finally, the “empty” binding is completely removed, and with it the binding mechanism and
its graphical representation.

Forcing a binding mechanism to open follows the metaphor of “violently” opening the
binding, even those that are not supposed to open after they are bound. The metaphor also
includes that a binding that is “violently” opened is essentially “damaged”; and, therefore not
to be used a second time, and because of that completely removed. A real world example
would be a person ripping out all pages of a book (“violently open” and “removing pages”).
24Like with addDocuments(ArrayList), it would be more secure to check if the passed document is an instance of

WDDocument before casting at line 448, even though there should only be WDDocument instances left once the
graphical representation is removed from the list.

133

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 134 — #136 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

The remaining parts are extensively damaged and will probably not be used anymore. How-
ever, the former contained pages can be rebound, for example, in binders or even as part of a
newly created book.

Area The abstract class WDBindingAreaMechanism extends WDBindingMechanism. It is
used by classes that support area shaped binding mechanisms. Currently, there is no additional
code that goes beyond the one of the superclass. Its constructor is identical to the one in
WDBindingMechanism. All attributes are passed to its superclass.

The concrete classes WDDeskMechanism and WDPageMechanism extend WDBinding|'
&|AreaMechanism. Both have areas as binding mechanisms: Documents on a desk can be
moved around, so can objects on a page.

Mechanisms for desk and binding have the clip alignment set to CENTER. The constant
PAGEOFFSET holds information about how much a document may overlap the mechanism
area. The value is given in millimeters. Currently, the mechanism for desk has set this value to
zero. This means that all documents have to be completely on the area; otherwise, an instance
of WDNodeDragger is intended to drag it there after mouse release. The page mechanism has
a maximum offset of −20 mm. This is an experimental value. It forces all documents that are
placed on a page to respect a border of 20 mm around the page’s bounds.

The constructor for WDDeskMechanism is identical to the one of WDPageMechanism,
except for its name:

[WDDeskMechanism.java | WDDeskMechanism(WDBinding,Rectangle,Paint)]

65 public WDDeskMechanism(WDBinding aBinding, Rectangle aSize, Paint aColor) {
66

67 super(aBinding, NOT_OPENABLE, CLIPALIGNMENT, FULLROTATION, PAGEOFFSET);
68

69 updateGraphicalRepresentation(createRectangle(0, 0, aSize, aColor,
70 DEFAULTSTROKEWIDTH, DEFAULTSTROKECOLOR));
71 }

Arguments that identify the associated binding as well as size and color of the graphical
representation of the mechanism are passed. The binding instance, as well as further infor-
mation that is related to the binding’s behavior is passed to the superclass at line 67. Those
include for desk and page mechanisms the information that the binding is not to be opened
after it is closed the first time, their clip alignment, as well as the information that added doc-
uments may be rotated by any angle (FULLROTATION), and the previously discussed offset
for added documents.

Line 69 triggers the update of the graphical representation with a newly created rectangle
of the class PPath. The called method creates and returns a rectangle with the given x and y
coordiantes, size, background color, stroke width, and stroke color:

[WDDeskMechanism.java | createRectangle(float,float,Rectangle,Paint,float,Paint)]

90 private PPath createRectangle(float aXpos, float aYpos,
91 Rectangle aRectangle, Paint aBackgroundColor, float aStrokeWidth,
92 Paint aStrokeColor) {

All lengths are converted from millimeters to pixels by WDUnitConverter. Currently, the
code for creating the rectangle is identical for desk and page mechanisms.

134

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 135 — #137 i
i

i
i

i
i

4.2. Documents

Point and Line Figure 4.11 on page 129 depicts that the abstract class WDBindingPoint|'
&|Mechanism inherits directly from WDBindingMechanism, whereas the abstract class WD|'
&|BindingLineMechanism extends WDBindingPointMechanism. A point-based mechanism is
used for bindings that bind documents at one single spot. A paper clip may be a valid example.

The constructor for point-based binding mechanisms takes the associated binding instance
as well as information about whether it can be opened, its clip alignment, and the maximum
rotation:

[WDBindingPointMechanism.java | WDBindingPointMechanism(WDBinding,boolean,int,double)]

56 public WDBindingPointMechanism(WDBinding aBinding, boolean ifOpenable,
57 int aClipAlignment, double aMaxRotation) {
58

59 super(aBinding, ifOpenable, aClipAlignment, aMaxRotation, NO_OFFSET);
60 }

It calls its superclass and passes all information unmodified, adding NO_OFFSET to indi-
cate that an offset is not requested. Documents are fixed at the binding mechanism’s position.

Line-based mechanisms are special cases of point-based ones. They also do not allow an
offset; however they restrict their maximum rotation: Line mechanisms do not allow rotation.
For instance, pages of a book cannot be rotated individually, because they are bound along a
line. The line mechanism’s constructor has fewer arguments than the point-based one:

[WDBindingLineMechanism.java | WDBindingLineMechanism(WDBinding,boolean,int)]

65 public WDBindingLineMechanism(WDBinding aBinding, boolean ifOpenable,
66 int aClipAlignment) {
67

68 super(aBinding, ifOpenable, aClipAlignment, NO_ROTATION);
69 }

It passes all given arguments unmodified to its superclass, which is WDBindingPoint|'
&|Mechanism, and adds with NO_ROTATION the information that rotation is not possible
for this kind of binding mechanism.

It can be criticized that in the real world, some line-based binding mechanisms show little
rotation of their documents, for example, as Fig. 4.8 on page 120 depicts. Therefore, some
rotation should be also possible for their implementation in a future version. It can be argued
that merging point and line dimensions would be the preferable solution.

Currently, there are no examples implemented that use point-based binding mechanisms,
but two implemented concrete classes are based on line mechanisms: WDBookMechanism
and WDSheetMechanism. The constructor for both look identical, except for their names:

[WDBookMechanism.java | WDBookMechanism(WDBinding)]

59 public WDBookMechanism(WDBinding aBinding) {
60 super(aBinding, NOT_OPENABLE, WDBindingClipCalculator.CENTER);
61 }

It passes the binding instance to its superclass, adds information that it is not for being
opened, and passes also the binding clip alignment, which is set to CENTER.

The graphical representation of book and sheet binding mechanism differ, though. WD|'
&|BookMechanism overrides open() and close() and passes different colored rectangles to
indicate whether a binding mechanism is open or closed:

[WDBookMechanism.java | open()]

72 public void open() {

135

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 136 — #138 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

73 open(createRectangle(0, 0, 5, 100, 2, Color.GREEN));
74 // open(new WDBox(getBinding().getWildDocs(), 0, 0, 5, 100, 2, Color.GREEN));
75 }

An open mechanism is represented in green. The rectangle creation is equivalent to the
ones for WDDeskMechanism or WDPageMechanism:

[WDBookMechanism.java | createRectangle(float,float,double,double,float,Color)]

98 private PPath createRectangle(float aXpos, float aYpos, double aWidth,
99 double aHeight, float aStrokeWidth, Color aColor) {

If the mechanism is closed it changes its color from green to red:
[WDBookMechanism.java | close()]

80 public void close() {
81 close(createRectangle(0, 0, 5, 100, 2, Color.RED));
82 }

WDSheetMechanism overrides the method open() and passes a node that is returned by
createGlue():

[WDSheetMechanism.java | open()]

70 public void open() {
71 open(createGlue());
72 }

The graphical representation which is named “glue” symbolizes that a sheet is created by
two pages that are “glued” together. The glue is an invisible PPath object with zero size. Its
only purpose is to have an object associated that stands for the graphical representation, even
though it is not visible:

[WDSheetMechanism.java | createGlue()]

82 private PPath createGlue() {

88 PPath graphics = PPath.createRectangle(0, 0, 0, 0);
89 graphics.setVisible (INVISIBLE);
90

91 return graphics;
92 }

4.3. Machines

The package de.atzenbeck.wilddocs.machines contains classes that are intended to modify
documents or perform related calculations. We follow the idea of extracting behavior from
objects and use specialized classes for processing.

4.3.1. Rotation

Instances of the class WDNodeRotator take care of purposeful as well as incidental rotation
of documents. Each instance of WDNodeInputEventHandler initializes a new node rotator,
passing the mouse event that occurred on the document. The constructor in WDNode|'
&|Rotator gets information about the node from the passed attribute. The final constructor
sets a reference to the node and the event to be used later as well as resets the previous random

136

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 137 — #139 i
i

i
i

i
i

4.3. Machines

rotation angle. setNode(aNode) also sets the rotation angle of the passed node, which can be
accessed through getOriginalRotation() later.

[WDNodeRotator.java | WDNodeRotator(PNode,PInputEvent)]

108 public WDNodeRotator(PNode aNode, PInputEvent aEvent) {
109 setNode(aNode);
110 setRotationMiddle(aEvent);
111 setPreviousRandomRotation(0);
112 }

If the given event option is null, a random point somewhere within the document’s area will
be set as rotation middle; otherwise, the cursor position that is referenced in the event object
will be taken.

Purposeful Rotation

Purposeful rotation is initiated by WDNodeInputEventHandler when the user double clicks on
a document and holds the mouse button at the second click. Firstly, it calls paintRotation|'
&|MiddleMark() in WDNodeRotator, that draws a little circle where the click occurred. This
point will be used as the center of the rotation. The mode of the event handler is changed to
purposeful rotation. While this mode is active, all mouse drag events will call rotateOn|'
&|Purpose(PInputEvent), passing the input event that is used to calculate the rotation angle:

[WDNodeRotator.java | rotateOnPurpose(PInputEvent)]

476 public void rotateOnPurpose(PInputEvent aEvent) {
477 // Rotate only if WildDocs has rotation on.
478 if (WildDocs.PURPOSEFUL_ROTATION) {
479

480 double a = aEvent.getPositionRelativeTo(getNode()).getX()
481 − getRotationMiddle().getX();
482 double b = aEvent.getPositionRelativeTo(getNode()).getY()
483 − getRotationMiddle().getY();

Firstly, the relative distance to the rotation center is calculated, then the angle. The doc-
ument’s original rotation is used at line 507, because the new angle will be interpreted as
absolute, not relative:

[WDNodeRotator.java | rotateOnPurpose(PInputEvent)]

502 double angle_pur = −Math.atan(a / b);
503 if (b > 0) {
504 angle_pur += Math.toRadians(180);
505 }
506

507 double angle = angle_pur + getOriginalRotation();

A static constant may be set to force purposeful rotation to snap into given angles. This is
checked by the if-clause at line 512 and calculated if required. The rotation method is called
at line 518:

[WDNodeRotator.java | rotateOnPurpose(PInputEvent)]

512 if (WildDocs.PURPOSEFUL_ROTATIONSPACING > 0) {
513 double spacing = Math
514 . toRadians(WildDocs.PURPOSEFUL_ROTATIONSPACING);

137

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 138 — #140 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Action Mouse Event Factor

Touching a document mouse press 0.9
New document loaded – 1.1
Dragging a document mouse drag speed/50
Alternative rotation mouse release 5.0

Table 4.4.: Current predefined rotation factors for random rotation, based on experiments to
reach realistic behavior

515 angle −= angle % spacing;
516 }
517

518 rotateNode(angle, getRotationMiddle());
519 }
520 }

Finally, WDNodeInputEventHandler calls a method at WDNodeRotator that removes the
rotation center mark and finally resets the purposeful rotation mode.

Incidental Rotation

Incidental rotation happens automatically on a document while it is being dragged, when a
new document is put onto the space, or when the mouse button is pressed on document. The
latter one simulates touching a document. Those actions are directly related to the user’s
mouse interaction and initiated by WDNodeInputEventHandler. We will discuss an alternative
behavior at the end of this section, which is based on random rotation on mouse release events.

The calculation of the random rotation takes different factors, depending on the action.
Table 4.4 lists those. Our model is different to the one described by Beaudouin-Lafon (2001)
and depicted in Fig. 2.15 on page 52. This model imitates dragging a document with one
finger, whereas WildDocs imitates moving it with the complete hand.

WildDocs’s incidental rotation formula is based on experiments we made with real paper
on a real desk. We used a camera to record the movement of paper on the desk. Later, we
cut the movie into key frames and measured the documents’ angles on those. The angle
calculation formula is simple, but delivers a level of spatial sloppiness that looks realistic and
is acceptable for our purpose:

[WDNodeRotator.java | calculateRandomRotation(PInputEvent)]

420 double angle = Math.toRadians((Math.random() ∗ (2 ∗ factor) − factor))
421 − getPreviousRandomRotation();
422

423 setPreviousRandomRotation(angle);

The rotation angle does not accumulate, therefore the previous random rotation angle is
subtracted. The subtraction of the factor makes negative values possible. Caused by that, we
need to apply two times the random number to allow also positive values.25

25Assume r is a random number with 0 ≤ r < 1, as produced with Math.random(). Further, assume a factor f > 0.
Then, r f produces only non-negative numbers with 0≤ r f < f . On the other side, r f − f produces only negative

138

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 139 — #141 i
i

i
i

i
i

4.3. Machines

Center on which the position dependent
rotation angle calculation is based on

Seating position

Computer screen

3,
00

0
px

Figure 4.12.: Calculating incidental rotation angle by position

The result is an animated behavior on the screen while dragged. The incidental rotation
relevant rotation middle point is the point where the mouse was clicked on the document.
A pressed mouse button on a node applies a random rotation, calculated and performed by
WDNodeRotator. The factor used for touch simulation (“touch factor”) is set to 0.9. This has
shown realistic results in our experiments. Additionally, some random offset is applied.

The above printed formula for calculating the rotation angle is also used when new nodes
are created and put onto the space. However, the factor we use is 1.1. This gives slightly
sloppier piles than the touch factor would.

Incidental rotation that is applied while a document is dragged takes two aspects into con-
sideration: Firstly, the random rotation with a speed of movement; and, secondly, the position
of the cursor on the space. Both are called by mouseDragged(PInputEvent) in WDNode|'
&|InputEventHandler while the node is dragged:

[WDNodeInputEventHandler.java | mouseDragged(PInputEvent)]

149 getNodeRotator().rotateByDirection(aEvent);
150 getNodeRotator().rotateRandomly(aEvent);

Figure 4.12 depicts the idea behind position dependent rotation. This is based on experi-
ments in which we have recorded and measured how paper is moved on a real desk. Partly
based on the shoulder position as well as the possibility to reduce the radius of an arm, for
example, by the elbow, the rotation angle of a moved document does not have its center at
the person’s seating position. Our experiments have shown that it is mostly a point behind
the person. WildDocs infers the seating position of the user at the middle lower part of the
screen. The seating position follows panning or zooming. We set the center on which the ro-
tation angle is based 3,000 pixels below the seating position. When a document is dragged, its
rotation follows a line that goes through that point and the current mouse position, as depicted
in Fig. 4.12.

numbers with − f ≤ (r f − f) < 0. The term 2r f − f produces both positive and negative numbers, with − f ≤
(2r f − f) < f .

139

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 140 — #142 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

[WDNodeRotator.java | rotateByDirection(PInputEvent)]

448 double a = getDirectionCircleMiddle().getX()
449 − aEvent.getPosition().getX();
450 double b = getDirectionCircleMiddle().getY()
451 − aEvent.getPosition().getY();

463 double angle = −Math.atan(a / b) − getNode().getRotation()
464 + getRelativeRotationAtStart() ;
465

466 rotateNode(angle, getRotationMiddle());

The angle is calculated by the absolute angle that the document should have according to
its position (−atan a

b) minus the previous rotation plus the rotation of the object at click time.
The random rotation calculation is the same as discussed above; however, the factor that

is used for the formula is not static, but depends on the mouse speed. The faster the mouse
moves, the larger the factor becomes. This results in possibly larger angles during faster
movement.

[WDNodeRotator.java | calculateRandomRotation(PInputEvent)]

409 factor = getMouseSpeed(aEvent) / 50;

The mouse speed is based on information from the passed mouse event. The method get|'
&|MouseSpeed(PInputEvent) extracts the time when the event occurred and calculates the
difference to the previous event. It requests the distance that the mouse travelled since the last
event notification. This is calculated by Pythagoras’s formula on the delta values for x and y
coordinates. Delta time and delta speed are used for gaining the speed of the cursor in pixels
(dependent on canvas coordinate system) per millisecond.

[WDNodeRotator.java | getMouseSpeed(PInputEvent)]

609 public double getMouseSpeed(PInputEvent aEvent) {
610 long eventTime = aEvent.getWhen();
611 long deltaTime = eventTime − getPreviousEventTime();
612 double speed = getMouseDistance(aEvent) / deltaTime;
613 setPreviousEventTime(aEvent);
614

615 return speed;
616 }

Caused by machine dependent problems running WildDocs on Windows XP or Linux, we
had to switch off the above discussed animated and mouse speed dependent incidental rotation
and introduce a simple mechanism that would have a comparable result. We will explain the
reasons in Sect. 5.2.2. Now, WDNodeInputEventHandler calls on each mouse release event
a random rotation similar to the one for “touching” a document; however, the factor is set
to 5. Tests have shown that this value produces acceptable results for our usability test. If this
mode is on, the touch behavior connected to mouse press events on documents is disabled.

4.3.2. Node Dragging

Documents are dragged by the user by simply clicking and dragging using the mouse. How-
ever, some instances require WildDocs to drag an object. Those include applying a random
offset or adjusting the position of a document when added to a binding. The class WD|'
&|NodeDragger takes care of this.

140

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 141 — #143 i
i

i
i

i
i

4.3. Machines

Random Offset

Random offsets may be applied in two situations: Firstly, when a new node is created and put
onto the desk; and, secondly, when a node is “touched” via pressing the mouse on it. This
simulates behavior of real paper on a desk, similar to that discussed in Sect. 4.3.1 on random
rotation. WDNodeInputEventHandler initiates the random offset call, passing the document
that has to be dragged as well as the maximum offset size in millimeters. In our code the
offset size is small, which equals a maximum offset of 5 mm.

[WDNodeInputEventHandler.java | mousePressed(PInputEvent)]

196 WDDocument doc = (WDDocument) aEvent.getPickedNode();
197 WDNodeDragger dragger = new WDNodeDragger(doc);
198 dragger.dragRandomly(doc, WDNodeDragger.SMALL_MAX_RANDOM_OFFSET);

Passing the document to the constructor is essential, because information about the Wild|'
&|Docs instance is extracted, which is used for unit conversions from millimeters to pixels.
If m is the given maximum offset, then WDNodeDragger calculates the random offset o for x
or y coordinates with −m≤ o < m. This is analogue to the formula discussed on page 138.

[WDNodeDragger.java | calculateRandomOffset(double)]

528 double xOffset = (2 ∗ aMaxOffset ∗ Math.random()) − aMaxOffset;
529 double yOffset = (2 ∗ aMaxOffset ∗ Math.random()) − aMaxOffset;

The WildDocs instance creates a new WDNodeDragger object, when a new document is
added to the desk or space, but only if the given boolean parameter ifRandomOffset is set to
true. A huge maximum random offset is applied, currently set to 100 mm.

[WildDocs.java | addNodeToDesk(WDDocument,boolean,boolean)]

1162 if (ifRandomOffset) {
1163 new WDNodeDragger(this).dragRandomly(aDoc,
1164 WDNodeDragger.HUGE_MAX_RANDOM_OFFSET);
1165 }

Binding Mechanism Support

As discussed in Sect. 4.2.3, bindings are a spin-off of our project. The binding mechanism
support exists in WildDocs in its basics. This is true also for external behavior support. To
avoid that users have to drag documents exactly to binding mechanisms, WildDocs infers that
a document that is placed roughly with its binding side on top of an open binding mechanism
is supposed to be put into the binding.

WDNodeInputEventHandler checks on every mouse release if the active node is an instance
of WDDocument.26 Only those instances can be added to a binding mechanism. Another
check is whether WildDocs has complex bindings activated. Only those require binding
mechanism support. Then, the active document is passed to a WDNodeDragger instance to
extract the binding mechanism (line 275), and finally to the extracted binding mechanism to
be added (line 278):

[WDNodeInputEventHandler.java | mouseReleased(PInputEvent)]

264 PNode activeNode = aEvent.getPickedNode();

26As it is now, it does not work if a user drags a binding on its mechanism onto another binding in order to add it.
A binding mechanism is not an instance of WDDocument and would therefore not be considered to be possibly
added. This is a bug needs to be addressed in the future.

141

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 142 — #144 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

271 if (activeNode instanceof WDDocument) {
272 WDDocument activeDoc = (WDDocument) activeNode;
273

274 if (WildDocs.COMPLEXBINDINGS) {
275 WDBindingMechanism bindingMechanism = new WDNodeDragger(
276 activeDoc).checkDragToBindingMechanism(activeDoc);
277 if (bindingMechanism != WDNodeDragger.NO_BINDINGMECHANISM) {
278 bindingMechanism.addDocument(activeDoc);
279 }
280 }

The method checkDragToBindingMechanism(WDDocument) takes all objects that are on
the space and keeps only those that are open binding mechanisms, and below and intersecting
with the active document:

[WDNodeDragger.java | checkDragToBindingMechanism(WDDocument)]

552 relevantMechanisms.keepFiltered(new OpenBindingMechanismFilter());
553 relevantMechanisms.keepFiltered(new SmallerNodeIndexFilter(docNode));
554 relevantMechanisms.keepFiltered(new IntersectionFilter(docNode));

An iterator is run over the relevant binding mechanisms to discard those that have another
object between the checked binding mechanism and the active document. This simulates the
real world in which a document cannot be added to a binding if another objects is in between:

[WDNodeDragger.java | checkDragToBindingMechanism(WDDocument)]

561 Iterator relevantMechanismsIterator = new HashSet(relevantMechanisms)
562 . iterator () ;
563 while (relevantMechanismsIterator.hasNext()) {
564 PNode mechanism = (PNode) relevantMechanismsIterator.next();
565 WDTempNodeStorage nodesBetween = new WDTempNodeStorage(root
566 .getAllNodes());
567

568 nodesBetween.keepFiltered(new NodeInBetween(docNode, mechanism));
569 nodesBetween.keepFiltered(new IntersectionFilter(mechanism));
570 nodesBetween.keepFiltered(new DocumentFilter());
571

572 if (! nodesBetween.isEmpty()) {
573 relevantMechanisms.remove(mechanism);
574 }
575 }

If there is at least one open binding mechanism that has the dragged document on top
without having any other object in between, then the remaining binding mechanism which is
closest to the document will be returned. That is the one with the highest index value. Oth-
erwise, a constant will be returned, representing the state of not having any relevant binding
mechanisms:

[WDNodeDragger.java | checkDragToBindingMechanism(WDDocument)]

583 if (! relevantMechanisms.isEmpty()) {
584 return (WDBindingMechanism) relevantMechanisms
585 .getHighestIndexNode();
586 } else {
587 return NO_BINDINGMECHANISM;

142

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 143 — #145 i
i

i
i

i
i

4.3. Machines

588 }
589 }

WDNodeInputEventHandler uses the returned WDBindingMechanism reference to call add|'
&|Document(WDDocument).27 After checking if the binding mechanism is open, the docu-
ment is added as child to the mechanism and a reference to the mechanism at the document
is set. Finally, a new WDNodeDragger instance is created with the mechanism as parameter,
that drags the document to the binding mechanism.

[WDBindingMechanism.java | addDocuments(ArrayList)]

419 new WDNodeDragger(this).dragToBindingMechanism(doc);

Before calling the animation, WDNodeDragger calculates the destination rotation. This
depends on the maximum possible rotation. For example, even binders allow a margin for
some rotation, whereas books do not. The document’s absolute rotation is the sum of the
random value plus the current rotation of the mechanism’s graphical representation plus the
standard clip alignment.

[WDNodeDragger.java | dragToBindingMechanism(PNode,int)]

381 double maxBindingRotation = getBindingMechanism().getMaxRotation();
382

383 double docRotation = (Math.random() ∗ maxBindingRotation − (maxBindingRotation / 2))
384 + getBindingMechanism().getGraphicalRepresentation()
385 .getRotation()
386 + (new WDBindingClipCalculator().rotation(aClipAlignment));

The span of the random rotation needs to be equal or smaller than the maximum rotation
allows. However, the angle may be negative or positive. Therefore, the maximum rotation
value divided by two is subtracted. The graphical representation is necessary, because the
binding may be put with an angle itself. Finally, there is a clip alignment that stores on which
side a document needs to be put on the binding mechanism, for example, on the left hand side,
which would be zero degrees, or on the top, which would be −90 degrees. This is calculated
by an instance of WDBindingClipCalculator which will be discussed in the next section.

After the destination rotation, also the destination location is calculated. Finally, the move-
ment animation is created, scheduled, and executed. The duration passed via the constant
ANIMATIONDURATION, is set to 500 ms.

[WDNodeDragger.java | dragToBindingMechanism(PNode,int)]

472 double docScale = aNode.getScale();
473

474 PActivity movement = aNode.animateToPositionScaleRotation(destPosX,
475 destPosY, docScale, docRotation, ANIMATIONDURATION);

482 getBindingMechanism().getBinding().getWildDocs().getCanvas().getRoot()
483 . addActivity (movement);
484 movement.setStartTime(System.currentTimeMillis());

4.3.3. Calculating Binding Clip Positions

Each instance of WDBindingMechanism or WDDocument has a clip alignment. They are
used when documents are added to bindings: Clips of mechanism and document will be put
27addDocument(WDDocument) wraps the document into an ArrayList instance and passes it to addDocuments(|'
&|ArrayList). This allows iteration through the list and add each document.

143

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 144 — #146 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

A
BC

D
E A

BC
D
E

BC A
D
E

State 1 State 2 State 3

Figure 4.13.: Index pusher behavior

together by an animated movement of the document, initiated and calculated by WDNode|'
&|Dragger. However, the calculation of clip alignments and locations is done by WD|'
&|BindingClipCalculator.

Currently, there are predefined clip positions for center, left, right, top, or bottom. The
graphical representation as well as the clip alignment are extracted from the given binding
mechanism and passed to the appropriate method:

[WDBindingClipCalculator.java | position(WDBindingMechanism)]

80 public Point2D position(WDBindingMechanism aMechanism) {
81 return position (aMechanism.getGraphicalRepresentation(), aMechanism.getClipAlignment|'

&|());
82 }

Similarly, given document references are used to extract the underlying node and the clip
alignment:

[WDBindingClipCalculator.java | position(WDDocument)]

90 public Point2D position(WDDocument aDocument) {
91 return position (aDocument.toPNode(), aDocument.getClipAlignment());
92 }

4.3.4. Index Pushing

Instances of WDNodeIndexPusher take care of pushing node indices automatically. They
push a document up if it leaves the scope of the above positioned ones. Figure 4.13 depicts an
example of how it works. An user moves document A, which is the bottom most document of
a pile of five documents (state 1). Intersections of documents above A with node A are marked
with transparent red polygons. The document never leaves its intersection with document D,
which is below E. However, it leaves the intersection with C and B (state 2). When moving
back the document, it is still below D, but appears on top of C and B (state 3). Its index is
“pushed up”, because it left the scope of B and C. This happens automatically while dragging
a document, and is based on observations on paper that follows gravity as well as the carrier’s
force that holds against it.

Figure 4.14 depicts a limitation of the index pusher. This is based on a limitation of the
underlying Piccolo framework. The original positions are: document D on top of C, C on

144

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 145 — #147 i
i

i
i

i
i

4.3. Machines

A
B

CD
E

A
B

CD
E A

B
CD

E A

State 1 State 2 State 3 (expected)

Figure 4.14.: Index pusher limits – indices chain

top of B, and B on top of A. Document E is above D and A (state 1). We assume now that
the user moves document A outside of document E’s scope, still remaining below B (state 2).
Somebody would expect the depicted state 3, where document A is pushed on top of E, but
still remains below B. However, Piccolo’s implementation of node indices, which are similar
to layers, does not allow such constellations. Document A would be moved below E as long
as it does not leave the scope of any of the documents, that indices are smaller than E’s index.
Currently, the result would look similar to state 1.

There is no easy solution that addresses this problem. One idea is to over paint the area
that needs to be visible. However, this draws several new problems. The area would need to
be painted correctly, even while the object is moved. Once moving is finished, mouse clicks
on this area would need to be passed to the right document, which is not the one that the
framework would take normally. Another problem would occur if the node underneath the
painted area would be moved. The painted node that is according to its index below would
have to be painted constantly on top of the moved one. After thinking about cost-benefit, we
decided not to invest into a solution of this problem yet.

WDNodeInputEventHandler instantiates a WDNodeIndexPusher object when the mouse
button is pressed.

[WDNodeInputEventHandler.java | helperInitialization(PInputEvent)]

102 setNodeIndexPusher(new WDNodeIndexPusher(aEvent, getWildDocs()));

The passed event is used by WDNodeIndexPusher’s constructor to extract the active node.
The method initRelevantCluster(PNode) creates an array of all objects that are relevant, that
are all above the active node and part of the same cluster. The latter clause is calculated by
updateRelevantCluster(), called at line 169:

[WDNodeIndexPusher.java | initRelevantCluster(PNode)]

165 private void initRelevantCluster (PNode aNode) {
166 setRelevantCluster(new WDTempNodeStorage(getWildDocs().getLayer()
167 .getAllNodes())) ;
168 getRelevantCluster().keepFiltered(new LargerNodeIndexFilter(getNode()));
169 updateRelevantCluster();
170 putNodesOnTop(getRelevantCluster().sortNodesOnIndex());
171 }

We will see later, that updateRelevantCluster() is also called sometimes during dragging. It
takes the existing relevant cluster and removes all references to objects that are no longer part

145

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 146 — #148 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

of the cluster on top of the active node.
[WDNodeIndexPusher.java | updateRelevantCluster()]

176 public void updateRelevantCluster() {
177 getRelevantCluster().keepFiltered(
178 new ClusterOnTopFilter(new WDClusterRecognizer(getNode(),
179 getWildDocs().getLayer().getAllNodes()))) ;
180

181 /∗
182 ∗ The active node should be always contained by the relevant cluster
183 ∗ list . The following if−clause is just for cases when this is not the
184 ∗ case (e.g ., caused by some program changes).
185 ∗/
186 if (! getRelevantCluster().contains(getNode())) {
187 getRelevantCluster().add(getNode());
188 }
189 }

The update method passes a filter to the instance of WDTempNodeStorage, which holds
all references to relevant objects. The filter of the class ClusterOnTopFilter builds the cluster.
The array keeps only those that are accepted by the filter. ClusterOnTopFilter makes use of
WDClusterRecognizer, which calculates boundaries of relevant clusters. This class will be
explained in the next section.

Once the index pusher instance is created on pressing the mouse button, WDNodeInput|'
&|EventHandler calls the associated index pusher on mouse drag events in order to push the
dragged node to a higher index level, if required:

[WDNodeInputEventHandler.java | mouseDragged(PInputEvent)]

155 getNodeIndexPusher().pushToHigherIndexLevel();

The index push procedure is based on an iterator, iterating through relevant objects, in-
cluding the dragged document itself. If one of them loses the intersection with the dragged
document, the cluster of all relevant objects will be updated, sorted, and put to the very top.
It appears to the user as if the dragged node only would have been pushed to a higher index
level:

[WDNodeIndexPusher.java | pushToHigherIndexLevel()]

194 public void pushToHigherIndexLevel() {
195 if (WildDocs.INDEXPUSHER) {
196 Iterator iterator = new HashSet(getRelevantCluster()).iterator();
197 while (iterator .hasNext()) {
198 PNode checkedNode = (PNode) iterator.next();
199 /∗
200 ∗ if the intersection is lost , re−calculate the cluster on top
201 ∗/
202 if (checkedNode.fullIntersects(getNode()
203 .getFullBoundsReference()) == false) {
204 updateRelevantCluster();
205 putNodesOnTop(getRelevantCluster().sortNodesOnIndex());
206 break;
207 }
208 }
209 }

146

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 147 — #149 i
i

i
i

i
i

4.3. Machines

A
B B

AA

B
State 1 State 3 (expected)State 2

Figure 4.15.: Index pusher limits – scope and rotation

210 }

The check for intersection works only reliable for documents that are not rotated. The prob-
lem is based on Piccolo’s lack of rotated bounds. Figure 4.15 depicts the problem. Assume
two documents A and B with B on top of A (state 1). The user drags A slightly to the right.
Document A appears to be outside B’s scope (state 2). However, neither A’s nor B’s bounds
are rotated, but outline the graphical representation. They are depicted as red dotted lines.
The transparent red area shows their intersection. When moving back document A, someone
would expect A on top of B (state 3), especially because the actual bounds are not visible.
However, A goes back underneath B again, similar to state 1. WDNodeIndexPusher only
works correctly if the document’s invisible bounds are moved outside the invisible bounds of
the other document.

4.3.5. Cluster Recognition

WDClusterRecognizer is used for making implicit clusters explicit. The constructor takes a
document or node as well as a collection of nodes. Its most important method is calc|'
&|ClusterOnTop(). It draws all objects from a given collection that are on top of a given node
and member of the cluster to which also the given node belongs to:

[WDClusterRecognizer.java | calcClusterOnTop()]

117 public WDTempNodeStorage calcClusterOnTop() {
118 WDTempNodeStorage buildClusterOnTop = new WDTempNodeStorage();
119 WDTempNodeStorage checkForIntersections = new WDTempNodeStorage();
120 WDTempNodeStorage checkedNodes = new WDTempNodeStorage();
121

122 checkForIntersections.add(getNode());
123 buildClusterOnTop.add(getNode());
124

125 while (!checkForIntersections.isEmpty()) {
126 PNode currentlyCheckedNode = (PNode) checkForIntersections.get(0);
127 if (checkedNodes.contains(currentlyCheckedNode) == false) {
128 WDTempNodeStorage intersectNodes = new WDTempNodeStorage(
129 getCollection ()) ;
130

131 intersectNodes.keepFiltered(new IntersectionFilter (
132 currentlyCheckedNode));

147

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 148 — #150 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

133 intersectNodes.keepFiltered(new LargerNodeIndexFilter(currentlyCheckedNode));
134 intersectNodes.removeFiltered(new AdornmentFilter());
135

136 Iterator iterator = intersectNodes. iterator () ;
137 while (iterator .hasNext()) {
138 Object o = iterator .next() ;
139 if (buildClusterOnTop.contains(o) == false) {
140 buildClusterOnTop.add(o);
141 if (checkForIntersections.contains(o) == false
142 && checkedNodes.contains(o) == false) {
143 checkForIntersections.add(o);
144 }
145 }
146 }
147

148 checkedNodes.add(currentlyCheckedNode);
149 }
150 checkForIntersections.remove(0);
151 }

The first part of the method takes the given node as start object (line 122). It checks all
intersecting nodes that are also part of the given collection. It keeps only those that have a
larger index than the currently checked node (line 133). Further, it discards all adornments,
such as shadows, bound lines, etc. (line 134).

The iterator at line 136 iterates through the remaining nodes. If the node is not part of
the cluster references already, it will be added (line 140). Further, it is put to the array of
nodes that needs to be checked, if it is not part already of this array, and if it was not checked
previously (line 143).

The last part iterates through the gained references and removes all descendants of nodes
that are on the list. The reason is that their index will be pushed automatically with their
ancestors’ indices:

[WDClusterRecognizer.java | calcClusterOnTop()]

162 Iterator iterator = new HashSet(buildClusterOnTop).iterator();
163 while (iterator .hasNext()) {
164 PNode node = (PNode) iterator.next();
165 buildClusterOnTop.removeFiltered(new DescendentFilter(node));
166 }
167

168 return buildClusterOnTop;
169 }

An improvement of this algorithm would be to ignore those nodes from iterating that were
already removed as descendants at line 165, instead of iterating through those as well.

4.3.6. Unit Conversion

Java’s coordinate system and units are different to the one used in WildDocs interface. Inter-
nally, however, WildDocs uses the same as Java. In Java, the origin of the coordinate system
is the top left corner. Increasing y values are represented further down. In WildDocs, the
origin is the bottom left corner. Increasing y values are represented further up.

148

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 149 — #151 i
i

i
i

i
i

4.4. Interaction

Units in Java are pixels, whereas WildDocs uses for most parameters millimeter at the can-
vas’s level, independent of zoom. Instances of the class WDUnitConverter convert between
both systems. The constructor calls an initialization method. This sets the pixels per mil-
limeter and is used for conversions. WildDocs is thus independent of the output device’s
resolution.

[WDUnitConverter.java | setPixelsPerMM()]

230 public void setPixelsPerMM() {
231 pixelsPerMM = Toolkit. getDefaultToolkit () .getScreenResolution() / 25.4;
232 }

4.3.7. Node Factory

Instances of WildDocs delegate the creation of Piccolo nodes to WDNodeFactory. WildDocs’s
factory pattern includes support for graphics (GIF, JPEG, or PNG), plain text, as well as
formatted text (HTML or RTF). Currently, WildDocs infers the type based on the file’s suffix
at load time.

4.3.8. Turning Documents (Obsolete)

The class WDDocTurner supports turning documents that consists of a front and a back, both
instances of WDLowLevelDoc. After complex bindings were introduced, WDDocTurner be-
came obsolete. There is still a need to turn documents; however, the notion of data at a specific
structure level has been replaced with flexible binding support, especially of the type SHEET
or PAGE, as discussed in Sect. 4.2.3. It is open to future work to adapt WDDocTurner to be
used for complex bindings

4.4. Interaction

Basic interaction methods are provided by Piccolo, such as dragging nodes or panning the
background. WildDocs classes that support interactions can be found in de.atzenbeck|'
&|.wilddocs as well as in de.atzenbeck.wilddocs.util.

4.4.1. Bounds Handle

WDBoundsHandle extends Piccolo’s class PBoundsHandle. They are used for resizing nodes.
Examples are depicted in Fig. 4.6 on page 112 or Fig. 4.18 on page 160. The main reason why
we developed an own class for WildDocs was to support removing and recalculating borders
on WDLowLevelDoc objects.

Every bounds handle is a child of the node that is the target of the handle’s interactions.
As soon as the handle is dragged, WDBoundsHandle calls startHandleDrag(Point2D,PInput|'
&|Event). The most important part of this method is the following:

[WDBoundsHandle.java | startHandleDrag(Point2D,PInputEvent)]

139 // Get the handler’s parent.
140 PNode node = aEvent.getPickedNode().getParent();
141

142 // Remove the border if there is one.

149

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 150 — #152 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

State 2State 1 State 3

AB AB AB

Figure 4.16.: Changing active node on mouse over

143 if (node instanceof WDLowLevelDoc) {
144 WDLowLevelDoc doc = (WDLowLevelDoc) node;
145 if (doc.getBorder() != null) {
146 doc.removeBorder();
147 }
148 }

If the target node is an instance of WDLowLevelDoc and has a border, the border will be
removed. Similarily, after releasing the handle, the method endHandleDrag(Point2D,PInput|'
&|Event) is called:

[WDBoundsHandle.java | endHandleDrag(Point2D,PInputEvent)]

160 // Get the handler’s parent.
161 PNode node = aEvent.getPickedNode().getParent();
162

163 // Repaint the border if borders are on.
164 if (node instanceof WDLowLevelDoc && WildDocs.LOWLEVELDOCBORDER) {
165 WDLowLevelDoc doc = (WDLowLevelDoc) node;
166 doc.createBorder();
167 }

The method checks if the node to which the bounds handle is attached is an instance of
WDLowLevelDoc and if the WildDocs instance has borders switched on. If both are true, a
new border will be created.

4.4.2. Change Active Node on Mouse Over

WildDocs implements behavior inspired by the real world. One is changing the active node
when another node comes in between the dragged one and the mouse pointer. Figure 4.16
depicts this case. Red colored documents indicate the current mouse focus. Document A
is behind B. The user drags A underneath B (state 1). As soon as the cursor is on top of
B (state 2), B gets the focus and is moved (state 3) without having the user to release and
press the mouse button. This behavior is similar to the real world where we cannot move a
document that is behind another one “through” the one on top. The class WDCanvas takes
care of changing the focus to another document. It extends Piccolo’s PCanvas and is capable
of adding additional or modifying existing input events.

Events are handed over from (1) Java’s event queue to (2) Piccolo’s PCanvas. From there
they are passed to (3) PInputManager where they get converted from InputEvent (package
java.awt.event) to (4) Piccolo’s PInputEvent. Then, they are passed to the appropriate listener.

150

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 151 — #153 i
i

i
i

i
i

4.4. Interaction

WDCanvas can modify events when they enter the Piccolo framework. For wrapping the
input event and type, it uses a data structure, provided by the inner class EventAndType. The
method sendInputEventToInputManager(InputEvent,int) overrides the method in PCanvas and
is the central part of WDCanvas.

[WDCanvas.java | sendInputEventToInputManager(InputEvent,int)]

241 protected void sendInputEventToInputManager(InputEvent aEvent, int aType) {
242 if (WildDocs.AUTOCLICKONMOUSEOVER && aEvent instanceof MouseEvent) {
243 // pack event and type to an array and send it for adaptation
244 EventAndType eventAndType = new EventAndType(aEvent, aType);
245

246 // unpack the array and send the events
247 ArrayList adaptedEventsAndTypes = adaptInputEvent(eventAndType);
248 Iterator iterator = adaptedEventsAndTypes.iterator();
249 while (iterator .hasNext()) {
250 EventAndType adapted = (EventAndType) iterator.next();
251 super.sendInputEventToInputManager(adapted.getEvent(), adapted
252 .getType());
253 }
254 } else {

258 super.sendInputEventToInputManager(aEvent, aType);
259 }
260 }

The additional procedure is only used on mouse events. This is checked at line 242. All
other events, such as keyboard, will be passed unmodified to PCanvas. If it is a mouse event
and the WildDocs instance has switched on support for automatic focus change on mouse
over, the event as well as the type is wrapped within a data structure that is supported by the
inner class EventAndType. An additional ArrayList instance is instantiated at line 247 with
the return value of adaptInputEvent(EventAndType), which decides whether additional events
need to be inserted and creates them if necessary, as explained further below. Then, an iterator
iterates through the array list, sending events and types to PCanvas, including newly added
ones.

The method adaptInputEvent(EventAndType) checks if modifications are necessary and re-
turns the appropriate events. Firstly, it creates an array list that is used to store all mouse
events that will be returned:

[WDCanvas.java | adaptInputEvent(EventAndType)]

122 protected ArrayList adaptInputEvent(EventAndType aEventAndType) {
123 ArrayList eventList = new ArrayList();

A check is performed at line 128 to follow only mouse events. All mouse events and their
types are extracted from the passed data structure at line 131 or 138.28

[WDCanvas.java | adaptInputEvent(EventAndType)]

128 if (aEventAndType.getEvent() instanceof MouseEvent) {
129

130 // unpack the information
131 MouseEvent event = (MouseEvent) aEventAndType.getEvent();

28The method event.getID() is equivalent to aEventAndType.getEvent().

151

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 152 — #154 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

138 int type = event.getID() ;

Another check makes sure that only mouse drag events that have the first mouse button
pressed go further. The click count of two is also not allowed, because it is assigned to
purposeful rotation.

[WDCanvas.java | adaptInputEvent(EventAndType)]

152 if (type == MouseEvent.MOUSE_DRAGGED && event.getClickCount() != 2
153 && event.getButton() == MouseEvent.BUTTON1) {

The associated instance of PInputManager is referenced to find the active node as well as
the current node underneath the cursor:

[WDCanvas.java | adaptInputEvent(EventAndType)]

165 PInputManager defaultManager = getRoot()
166 .getDefaultInputManager();

174 PNode activeNode = defaultManager.getMouseFocus()
175 .getPickedNode();
176

177 PNode nodeUnderCursor = defaultManager.getMouseOver()
178 .getPickedNode();

The following part checks three conditions: Firstly, is the node below the cursor not the
active node anymore? This happens for example if the node is dragged underneath another
one in a way that the cursor is moved on top of the above node, as depicted in Fig. 4.16
(state 2). The next two conditions attempt to solve the problem that the mouse movement
may be faster than the following dragged node. This delay is a Java issue. Line 189 checks if
the active node is below the one directly underneath the cursor. Line 191 makes sure that it is
not an instance of PCamera. The camera represents a view on layers. It may get underneath
the cursor when the cursor leaves the node’s bounds by moving faster than the dragged node:

[WDCanvas.java | adaptInputEvent(EventAndType)]

188 if (! activeNode.equals(nodeUnderCursor)
189 && new WDIndexComparator().compare(activeNode,
190 nodeUnderCursor) == −1
191 && !nodeUnderCursor.getClass().equals(PCamera.class)) {
192 MouseEvent e = (MouseEvent) event;

The issue of latency between mouse pointer and dragged node is also a problem when
the node is dragged quickly underneath another node. It may be possible that there is no
mouse event produced while the mouse was above the other node. It is also possible that
the additional mouse release and press were created (discussed on the facing page), but it
is performed after the mouse and the dragged node moved away from the above positioned
node. These scenarios depend among others on the speed of the machine running WildDocs
as well as the speed of dragging the node. One possible solution is to ensure synchronized
dragging.

After those conditions are met, two additional mouse events are created. The first event
represents a mouse release (line 197), the second one a mouse press (line 203):

[WDCanvas.java | adaptInputEvent(EventAndType)]

196 // Create a mouse event for mouse button release
197 MouseEvent eventMouseRelease = new MouseEvent(e
198 .getComponent(), MouseEvent.MOUSE_RELEASED, e

152

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 153 — #155 i
i

i
i

i
i

4.4. Interaction

199 .getWhen(), e.getModifiers(), e.getX(), e.getY(), e
200 .getClickCount(), e.isPopupTrigger(), e.getButton()) ;
201

202 // Create a mouse event for mouse button press
203 MouseEvent eventMousePress = new MouseEvent(e
204 .getComponent(), MouseEvent.MOUSE_PRESSED, e
205 .getWhen(), e.getModifiers(), e.getX(), e.getY(), e
206 .getClickCount(), e.isPopupTrigger(), e.getButton()) ;

Even though the user does not release the mouse button, a mouse release and mouse press
will be scheduled and performed later. This will change the focus to the node directly under-
neath the cursor, when executed. Finally, the original event as well as the two new events are
added to the array:

[WDCanvas.java | adaptInputEvent(EventAndType)]

208 // Add the original event
209 eventList .add(aEventAndType);
210

211 // Add the created mouse release
212 eventList .add(new EventAndType(eventMouseRelease,
213 MouseEvent.MOUSE_RELEASED));
214

215 // Add the created mouse press
216 eventList .add(new EventAndType(eventMousePress,
217 MouseEvent.MOUSE_PRESSED));
218 }
219 }
220 }

The array list is still empty if one of the previous conditions of this method fails. In this
case, the original event is added to the list. Finally, the array list is returned:

[WDCanvas.java | adaptInputEvent(EventAndType)]

226 if (eventList .size () == 0) {
227 eventList .add(aEventAndType);
228 }
229

230 return eventList ;

4.4.3. Input Event Handlers

Menu and Keyboard Shortcuts

All keyboard shortcuts are supported by the main menu (WDMainMenu). The command key
may differ among various operating systems. For example, the command key on Mac OS X
(⌘), as depicted for all shortcuts in Fig. 4.17, is equivalent to CTRL on Linux or Windows.
Some originally assigned shortcut keys, for example, CTRL-O for importing (“open”) files as
documents, were removed later. They were not used for the usability tests and we wanted to
avoid participants hitting them accidentally.

WDMainMenu extends Java’s class MenuBar and implements ActionListener. All menus
are listed in Fig. 4.17, including marked differences among WildDocs versions. WildDocs

153

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 154 — #156 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Disabled in v1
Disabled in v3

Disabled in v1, v3, and v4
Disabled in v0, v1, v2, v3, and v4

Figure 4.17.: WildDocs menus on Mac OS X

v3 has “Straighten stack” disabled, v1 additionally also “Push left” and “Push right”. Only
WildDocs v2 has “Toggle Quickzoom” enabled as well as shortcuts for zooming actions. The
given file names for saving or loading, the factors for zooming in, out, or reset, as well as the
version names in the “Mode” menu are statically set in WildDocs. The complete “Bindings”
menu and “Toggle Fullscreen Mode” were disabled for all WildDocs versions due to the fact
that they were not used for the usability test.

The method actionPerformed(ActionEvent) takes care that any accepted event in WildDocs
and calls the appropriate method. All methods that are called from there are part of the class
WildDocs. For counted actions, also the counter incrementation method is called, for instance:

[WDMainMenu.java | actionPerformed(ActionEvent)]

376 } else if (cmd.equals(STRAIGHTENSTACK)) {
377 getWildDocs().straightenStack();
378 getWildDocs().increaseStatStraightenStack(1);
379 } else if (cmd.equals(SELECTNODESBELOWCURSOR)) {

File Menu The “File” menu has four entries. The first two commands, “Save WildDocs
(wilddocs.data)” and “Load WildDocs (wildddocs.data)”, save or load the current object store.
The file name is shown as part of their menu entries, currently “wilddocs.data”. These actions
are not completely functional yet. “Import Documents. . . ” opens a file dialog window that
lets the user select one or more files to be imported. Files of the type GIF, JPEG, PNG,
plain text, HTML, or RTF are supported.29 Finally, the menu entry “License” creates a text
29Currently, WildDocs infers that the file type is represented by the file extension.

154

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 155 — #157 i
i

i
i

i
i

4.4. Interaction

document with the software license on it and puts it onto the WildDocs space.

Document Menu Commands for moving or deleting documents are placed within the “Doc-
ument” menu. The first three entries support selection and movement of a range of nodes.
“Add nodes below cursor to selected nodes” can be used to span a selection rectangle over
an area, from one node to another. “Wipe away selection” deletes the selection rectangle.
Moving all selected nodes to the current cursor position can be triggered by the menu entry
“Move selected nodes” or its shortcut.

“Straighten stack” produces straight looking piles. “Push left” or “Push right” are used to
move the node below the cursor to the left or to the right (including putting them it to the front
afterwards). This can be used, for example, for browsing stacks.

Deleting the document below the cursor can be performed by “Delete document” or the
associated shortcut key CTRL-Backspace. Removing all documents from the WildDocs
space is initiated with the menu entry “Delete ALL documents”.

Bindings Menu The entries in “Bindings” are easily extensible. WildDocs supports devel-
opers implementing new binding mechanisms. Currently, there are only the entries “Book” or
“Sheet” for complex bindings as well as the entry “Primitive Binding” for primitive bindings.
The activation of one of those triggers the creation of a binding of the selected type.

Zoom Menu The “Zoom” menu contains three entries for stepwise zooming: “Zoom in
(125% size)”, “Zoom out (80% size)”, and “Reset to 100%”. The displayed zoom values
are taken from static variables in WildDocs. Additionally, there is an entry for quickzoom
(“Toggle Quickzoom”).

Mode Menu We created the “Mode” menu to easily switch between different WildDocs
versions. The name of the version is part of the menu entries and appears also at the Wild-
Docs window title. “WD” stands for “WildDocs”, followed by a vertical line and the actual
version name. WildDocs v0 is a version that was not used for the usability tests. The letters
in square brackets represents the main feature of the instance and therefore help memorizing
the version type once it is known.30 The letters stand for “complete feature set” [c], “variable
size support” [vs], “extended zooming support” [z], “rotation and sloppiness support” [r], or
“fixed size support” [fs].

A version with most features of v1 , v2 , v3 , and v4 is instantiated through the menu entry
“New WD | v0 [c]”. It is the default version at startup. The four used versions for the user
test are created by the menu entries “New WD | v1 [c]”, “New WD | v2 [vs]”, “New WD |
v3 [z]”, or “New WD | v4 [fs]”.

Window Menu The “Window” menu contains entries related to the WildDocs window or
statistics. The entry “Toggle Fullscreen Mode” toggles between having the WildDocs space
inside a window and full screen use. The window look and feel uses the default on the running
computer.

Statistics support was implemented for usability evaluations. The entry “Save Statistics in
File Only” allows to save the current statistics into a file, whereas “Show Statistics” saves

30It did not support the test participants in understanding the main features before or during the testing.

155

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 156 — #158 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

them and additionally creates an equivalent text document on the WildDocs space. To avoid
missing statistics (e. g., if the administrator forgets to save them manually) we implemented
code that saves statistics automatically on application exit or version change via “Mode”
menu. This behavior is set for each newly created WildDocs instance. It can be switched off
at any time via the menu entry “Save Statistics automatically”. When switched off, the mark
in front of the menu entry will disappear.

Open Issues We did not change anything in look and feel after the user testing has started
in order to provide the same application for every participant within the same group. Some
issues concern the design of the menu entries. For example, there are violations of capital-
ization. Most menu entries are correctly capitalized, except some entries in “Document”,
“Zoom”, or “Window”. This is caused by different development phases and certain prefer-
ences at those times. Another issue are menu entries for statistics. Semantically, they belong
to the “File” menu rather than to “Window”.

Some menu entries are practicably only available by shortcut, because they require the
mouse cursor to point to a node. For example, CTRL-Backspace deletes the node below
the cursor, as discussed on the previous page. Because the mouse is used to point to the
node, it cannot be used to activate the appropriate menu. Other examples include CTRL-L,
CTRL-R, or CTRL-S, among others. However, for all relevant cases, there exists a keyboard
shortcut.

Node Events

Instances of the class WDNodeInputEventHandler handle interactions with nodes. Important
parts were already discussed in Sect. 4.3 with respect to the invocation of machines. Some
remaining aspects will be explained in this section.

WDNodeInputEventHandler extends Piccolo’s class PBasicInputEventHandler, which pro-
vides basic support for input events on nodes. The constructor of WildDocs’s node input
event handler associates the used WildDocs instance. A new node rotator (WDNodeRotator)
and index pusher (WDNodeIndexPusher) are instantiated and associated on mouse click:

[WDNodeInputEventHandler.java | helperInitialization(PInputEvent)]

91 public void helperInitialization (PInputEvent aEvent) {

101 setNodeRotator(new WDNodeRotator(aEvent));
102 setNodeIndexPusher(new WDNodeIndexPusher(aEvent, getWildDocs()));
103 }

Mouse Pressed Aside of initiating some machines, mousePressed(PInputEvent) hides the
shadow of the activated WDLowLevelDoc instance:

[WDNodeInputEventHandler.java | mousePressed(PInputEvent)]

166 if (aEvent.getPickedNode() instanceof WDLowLevelDoc) {
167 ((WDLowLevelDoc) aEvent.getPickedNode()).setShadowVisible(false);
168 }

The first mouse press event initiates some random offset and random rotation, simulating
a similar effect as a finger touching a paper on a desk. At the second mouse press event,
purposeful rotation is called, as discussed in Sect. 4.3.1, and the purposeful statistic counter

156

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 157 — #159 i
i

i
i

i
i

4.4. Interaction

increased. The following code sets also the variable that represents the state of activated
purposeful rotation. This is necessary for correctly handling mouse drag events:

[WDNodeInputEventHandler.java | mousePressed(PInputEvent)]

173 switch (aEvent.getClickCount()) {
174 case 2:
175 setRotationOnPurpose(true);
176 getNodeRotator().paintRotationMiddleMark();

183 if (WildDocs.PURPOSEFUL_ROTATION) {
184 getWildDocs().increaseStatPurposefulRotation(1);
185 }

Mouse Dragged Mouse drag events handle several different behavior, depending on the
mode or set preferences. After setting the handled state of the event, the above described
purposeful rotation mode is checked. If a purposeful rotation is initiated, dragging will result
in rotating the active node:

[WDNodeInputEventHandler.java | mouseDragged(PInputEvent)]

112 public void mouseDragged(PInputEvent aEvent) {
113 aEvent.setHandled(true);
114

115 if (isRotationOnPurpose() == true) {
116 // Rotate the node on purpose
117 getNodeRotator().rotateOnPurpose(aEvent);

Otherwise, the delta value of the mouse motion is calculated and used to move the node.
At this point, another feature is implemented: WildDocs allows enabling of a grid to which
the dragged node snaps. Even though working, this behavior is experimental. It has to be
switched on at the WildDocs instance, which is checked at line 122:

[WDNodeInputEventHandler.java | mouseDragged(PInputEvent)]

118 } else {
119 PDimension delta = aEvent
120 .getDeltaRelativeTo(aEvent.getPickedNode());
121

122 if (WildDocs.GRID) {
123 PDimension account = getGridDragAccount();
124 double deltaX = delta.getWidth() + account.getWidth();
125 double deltaY = delta.getHeight() + account.getHeight();
126

127 double gridspacing = new WDUnitConverter(getWildDocs())
128 .wdToJava(WildDocs.GRIDSPACING);
129

130 double modDeltaX = deltaX % gridspacing;
131 double modDeltaY = deltaY % gridspacing;
132

133 delta .setSize(deltaX − modDeltaX, deltaY − modDeltaY);
134

135 setGridDragAccount(new PDimension(modDeltaX, modDeltaX));
136 }
137

157

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 158 — #160 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

138 // Move the node
139 aEvent.getPickedNode().translate(delta.getWidth(),
140 delta .getHeight()) ;

The heart of this behavior is a so-called “grid drag account”, which stores the delta values
of mouse movements that were discovered, but were not applied to the node’s movement
yet. On the other side, moving the node results in subtracting the moved dimension from the
account. getGridDragAccount() returns the current grid account. When null, it returns a new
instance of PDimension with zero values:

[WDNodeInputEventHandler.java | getGridDragAccount()]

448 public PDimension getGridDragAccount() {
449 if (gridDragAccount == null) {
450 setGridDragAccount(new PDimension(0, 0));
451 }
452 return gridDragAccount;
453 }

Line 130 and 131 calculate the current delta values modulo the grid spacing. The delta
values are the sum of the latest mouse movement delta plus the grid drag account value,
which are calculated at line 124 and 125. The mod delta values are subtracted from the
delta values, packed into a newly created PDimension object, and associated as new grid ac-
count at line 135. The results of the subtractions at line 133 may be zero, the grid spacing
value, or a multiple of the grid spacing value. Finally, the node is moved through trans-
late(double,double). If the grid is switched off, the mouse movement delta value is passed
unmodified to the translate method.

The mouse drag method also performs incidental rotation31 calls, as discussed in Sect. 4.3.1,
as well as calls for pushing the node to a higher index level, as discussed in Sect. 4.3.4. If
switched on, both methods are triggered at each mouse drag event handled by WDNode|'
&|InputEventHandler:

[WDNodeInputEventHandler.java | mouseDragged(PInputEvent)]

142 // Rotation stuff
143 if (! WildDocs.RANDOM_ROTATION_ONLY_AT_MOUSE_RELEASE) {

149 getNodeRotator().rotateByDirection(aEvent);
150 getNodeRotator().rotateRandomly(aEvent);
151 }
152 }
153

154 // Take care that the node has the right index
155 getNodeIndexPusher().pushToHigherIndexLevel();
156 }

Mouse Released Mouse release events reset the purposeful rotation state and delete the
rotation middle mark, if activated. If purposeful rotation was inactive, it triggers a random

31We experienced an unsolved bug in cases when direction-based rotation (line 149) and random rotation (line 150)
are both switched on at the same time: After dragging the node for some time, the maximum rotation angle
becomes too large. This problem did not affect the test, because the extended incidental rotation was replaced
by a random rotation on mouse release, as further discussed in Sect. 4.3.1, but needs to be addressed in a future
version.

158

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 159 — #161 i
i

i
i

i
i

4.4. Interaction

rotation on the node. Finally, all shadows of WDLowLevelDoc instances are updated, as dis-
cussed in Sect. 4.2.2:

[WDNodeInputEventHandler.java | mouseReleased(PInputEvent)]

245 public void mouseReleased(PInputEvent aEvent) {
246 aEvent.setHandled(true);
247

248 if (isRotationOnPurpose() == true) {
249 getNodeRotator().deleteRotationMiddleMark();
250 setRotationOnPurpose(false);
251 } else {

254 if (WildDocs.RANDOM_ROTATION_ONLY_AT_MOUSE_RELEASE) {
255 getNodeRotator().rotateRandomly(aEvent);
256 }
257 }

307 getWildDocs().updateShadows();

Line 259 to 305 contains experimental code for dragging nodes onto complex or primitive
bindings. WildDocs currently ignores this part, because of problems in functionality.

Mouse Moved Each mouse move event sets a reference at the WildDocs instance to the
document that has currently the mouse over:

[WDNodeInputEventHandler.java | mouseMoved(PInputEvent)]

348 PNode node = aEvent.getPickedNode();
349 if (node instanceof WDDocument) {
350 WDDocument doc = (WDDocument) node;
351 getWildDocs().setLastMouseOverOnDocument(doc);
352 }

This is used for pushing the document below the cursor to the foreground or to the back-
ground, for example, via CTRL-U or CTRL-D.

Mouse Entered or Exited In the current WildDocs version, methods that handle mouse en-
ter or exit events on nodes do not add additional functionality. However, during development
we had bounds handle appear when the mouse entered a node’s bounds and were removed
when the mouse left them. The original code still can be seen. mouseEntered(PInputEvent)
triggered the creation of handles for WDLowLevelDoc instances:

[WDNodeInputEventHandler.java | mouseEntered(PInputEvent)]

318 // if (aEvent.getPickedNode() instanceof WDLowLevelDoc) {
319 // WDBoundsHandle.addBoundsHandlesTo(aEvent.getPickedNode());
320 // }

mouseExited(PInputEvent) called WDBoundsHandle to remove the bounds handle from the
document:

[WDNodeInputEventHandler.java | mouseExited(PInputEvent)]

337 // WDBoundsHandle.removeBoundsHandlesFrom(aEvent.getPickedNode());

Both methods for adding or removing bounds handles were static. During the development
process, removeBoundsHandlesFrom(PNode) was removed from WDBoundsHandle, because
it was not longer in use.

159

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 160 — #162 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

Figure 4.18.: Bounds handles with marked mouse over areas for resizing (outdated develop-
ment version)

The reason why we removed this feature was that the bounds handles disappeared as soon
as the mouse left the node’s bounds. However, as Fig. 4.18 depicts, a handle’s area is at least
half outside the node’s bounds. Tests have shown that it happens often that the mouse moves
outside the node. Even though still inside the handle’s area, all handles disappeared. It can be
seen in Fig. 4.18 that the area on which the user needs to click to resize a node is small, 25 %
for handles placed at edges and 50 % for the others. These areas are indicated at the figure
with red transparent marks.

There are several solutions to this problem. One solution is to display all bounds handles
at any time. This is what we have implemented. Another solution is to include the mouse
handles’ areas for adding or removing them on mouse enter or exit. This would mean that
whenever the mouse is above the node or above any of its bounds handles, the bounds handle
would be displayed. Still, this does not save the problem that the cursor may move slightly
outside the bounds handle and has to be moved back to the node in order to bring it back
again.

A third solution would be to implement a time counter that removes the handles after a
certain time after the mouse moved outside the node’s or the bounds handles’ area. The forth
possibility would be to increase the area around a node when the handles become activated
on mouse over. Also magnetic behavior on handles that pull the mouse pointer onto a handle
when it gets close may support the user in positioning the mouse.

Zoom Events

Mouse events that are intended for zooming are handled by WDZoomEventHandler, which
extends Piccolo’s class PZoomEventHandler. The method dragActivityFirstStep(PInputEvent)
overrides a method in PZoomEventHandler. It is called when smooth zooming is initiated.
This happens in WildDocs through pressing the right mouse button on the canvas or on a
node that cannot become an active node through mouse events (pickable flag set to false), for
example, a desk imitation (see Sect. 4.1.4) or rubber band (see discussion on the facing page).
Beside sending the unmodified event to the superclass, it also increases the statistics counter
for smooth zooming.

The second main method is dragActivityStep(PInputEvent), which also overrides a method
in PZoomEventHandler. It handles incoming zoom events steps. If smooth zooming is dis-
abled, nothing is processed there. Otherwise, the event is sent to the superclass and sets the
next quickzoom command to full zoom out:

[WDZoomEventHandler.java | dragActivityStep(PInputEvent)]

92 protected void dragActivityStep(PInputEvent aEvent) {
93 if (WildDocs.SMOOTHZOOMING) {
94 super.dragActivityStep(aEvent);

160

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 161 — #163 i
i

i
i

i
i

4.4. Interaction

100 if (getWildDocs() != null) {
101 getWildDocs().setZoomFrameAtQuickZoomOut(WildDocs.FULLZOOMOUT);
102 }
103 }

Rubber Band

A rubber band in WildDocs is a transparent rectangle. It can be extended in size. All in-
tersecting nodes are considered as “selected”. This is used, for example, for moving several
nodes at the same time.

There are two ways to create selections in WildDocs: one using the mouse; the other using
the keyboard. Mostly, we call selection objects that are created or modified by mouse actions
“rubber band”, and the keyboard related ones “selection rectangle”. Both terms have their
origins in different phases of development, but have similar semantics.

Rubber bands or selection rectangles are instances of WDRubberBand. This class can be
found in package de.atzenbeck.wilddocs.util.

Mouse Selection The class WDDeskInputEventHandler takes care of interactions with the
desk. It extends Piccolo’s PPanEventHandler. It allows the switching on or off of background
panning as well as interaction with a selection rectangle (also called “rubber band”) with the
mouse. The mouse enabled rubber band is experimental and was switched off during the
usability tests.

A rubber band is created by WDDeskInputEventHandler on mouse press, that is, when the
left mouse button is pressed on the desk:

[WDDeskInputEventHandler.java | mousePressed(PInputEvent)]

117 public void mousePressed(PInputEvent aEvent) {
118 // Handled needs to be false, otherwise zooming does not work.
119 aEvent.setHandled(false);
120

121 if (WildDocs.MOUSERUBBERBANDSELECTION && getRubberBandStatus() != |'
&|RUBBERBAND_FINISHED

122 && aEvent.isShiftDown()) {
123 aEvent.setHandled(true);
124 Point2D pos = aEvent.getPosition();
125 setRubberBandStatus(RUBBERBAND_DRAW);
126 setRubberBand(new WDRubberBand(getWildDocs(), pos));
127 } else {
128 if (WildDocs.PANNING)
129 super.mousePressed(aEvent);
130 }
131 }

The WildDocs instance has a static switch that allows activation or deactivation of selec-
tions with the rubber band. This is checked at line 121. The user needs to have the shift key
pressed for creating a new rubber band (line 122).

The method getRubberBandStatus() at line 121 returns the current status of the rubber
band. The status can be inactive, drawing, or finished. A new rubber band is only created, if
the rubber band does not have the status “finished”.

161

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 162 — #164 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

If any of those conditions are not true, the mouse press event is passed to the superclass,
which initiates panning the background, if WildDocs allows panning (see line 128). Other-
wise, if all required conditions are true, the rubber band status is set to “draw” and a rubber
band is created, starting at the position where the cursor is located.

WDRubberBand constructs a new rubber band with default values if not given otherwise,
such as color, stroke type, or stroke color. The central part of the constructor calls the rubber
band creation method:

[WDRubberBand.java | WDRubberBand(WildDocs,double,double,double,double,Color,Stroke,Color)]

100 createRubberObject(x, y, width, height, aColor, aStroke, aStrokeColor);

This creates a rectangle with the given visual attributes, position and size, sets transparency,
and adds it to the WildDocs space. Rubber bands do not accept any mouse interactions di-
rectly as other nodes do. While the rubber band status is set to drawing mode, mouse|'
&|Dragged(PInputEvent) updates the rubber band with the current cursor coordinates:

[WDDeskInputEventHandler.java | mouseDragged(PInputEvent)]

136 public void mouseDragged(PInputEvent aEvent) {
137 aEvent.setHandled(false);
138

139 if (WildDocs.MOUSERUBBERBANDSELECTION && getRubberBandStatus() == |'
&|RUBBERBAND_DRAW) {

140 aEvent.setHandled(true);
141 getRubberBand().update(aEvent.getPosition());
142 } else {
143 if (WildDocs.PANNING)
144 super.mouseDragged(aEvent);
145 }
146 }

The method update(Point2D) extends the opposite corner of the start position (saved at
construction time) to where the cursor is located. The rubber band’s position and size becomes
fixed as soon as the mouse is released:

[WDDeskInputEventHandler.java | mouseReleased(PInputEvent)]

151 public void mouseReleased(PInputEvent aEvent) {
152 aEvent.setHandled(false);
153

154 if (WildDocs.MOUSERUBBERBANDSELECTION && getRubberBandStatus() == |'
&|RUBBERBAND_DRAW) {

155 aEvent.setHandled(true);
156 setRubberBandStatus(RUBBERBAND_FINISHED);
157 } else {
158 if (WildDocs.PANNING)
159 super.mouseDragged(aEvent);
160 }
161 }

For moving all nodes that intersect with the rubber band, the user has to click on the back-
ground without the shift key pressed. A new instance of WDNodeDragger will drag all inter-
secting nodes to where the click was performed (line 174):

[WDDeskInputEventHandler.java | mouseClicked(PInputEvent)]

166 public void mouseClicked(PInputEvent aEvent) {

162

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 163 — #165 i
i

i
i

i
i

4.4. Interaction

167 aEvent.setHandled(false);
168

169 if (WildDocs.MOUSERUBBERBANDSELECTION && getRubberBandStatus() == |'
&|RUBBERBAND_FINISHED) {

170 aEvent.setHandled(true);
171

172 if (! aEvent.isShiftDown()) {
173 WDTempNodeStorage selected = getRubberBand().intersectDocs();
174 new WDNodeDragger(getWildDocs()).dragCenterToPosition(selected,
175 aEvent.getPosition()) ;
176 }
177

178 getRubberBand().removeFromWildDocs();
179 setRubberBandStatus(RUBBERBAND_INACTIVE);
180 } else {
181 if (WildDocs.PANNING)
182 super.mouseClicked(aEvent);
183 }
184 }

If the user wants to remove the selection rectangle without moving intersecting nodes,
he/she can click on the background while having the shift key pressed. The if-clause at
line 172 will then skip moving nodes. Finally, the rubber band will be removed (line 178)
and the rubber band status is set to “inactive” again (line 179), allowing the creation of a new
one on mouse press with pressed shift key.

Keyboard Selection Keyboard-based selection rectangle interactions are triggered by the
class WDMainMenu, if enabled by the preference settings in WildDocs. It sets up three menu
entries for creating or expanding the selection rectangle (CTRL-A), removing it (CTRL-W),
or moving the selected nodes (CTRL-M).

[WDMainMenu.java | WDMainMenu(WildDocs)]

207 if (WildDocs.KEYRUBBERBANDSELECTION) {
208 addMenuItem(m, SELECTNODESBELOWCURSOR, KeyEvent.VK_A);

211 addMenuItem(m, REMOVESELECTION, KeyEvent.VK_W);
212 addMenuItem(m, MOVESELECTEDNODES, KeyEvent.VK_M);

214 }

The command CTRL-A calls the method addNodesBelowCursorToSelection() in WildDocs.
Firstly, it checks if there is already an existing rubber band:

[WildDocs.java | addNodesBelowCursorToSelection()]

1645 if (getRubberBand() == NO_RUBBERBAND) {
1646 setRubberBand(new WDRubberBand(this, currentMousePositionOnCamera()));
1647 } else {

If no rubber band exists, a new one is created at the current mouse pointer position. If one
exists already, the node that is directly below the cursor is passed for updating the selection
rectangle:

[WildDocs.java | addNodesBelowCursorToSelection()]

1658 boolean result = getRubberBand().update(

163

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 164 — #166 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

1659 nodesBelowCursorOnLayer().getHighestIndexNode());
1660

1661 if (result == false) {
1662 System.err
1663 . println ("WARNING: RubberBand was not modified, "
1664 + "because no node was handed over that was to be |'

&|spanned."
1665 + "The problem is probably caused by "
1666 + IntersectionFilter .class.toString ()) ;
1667 }
1668 }

The method update(PNode) in class WDRubberBand wraps the given node into a collection
object and passes it to update(Collection), which iterates through the handed over objects and
increases the span to cover the full bounds of all PNode instances. If there is a change in size
of the span rectangle, its graphical representation will be animated to the new size:

[WDRubberBand.java | update(Collection)]

188 public boolean update(Collection aCollectionOfNodes) {
189 boolean returnValue = false;
190

191 PBounds span = new PBounds();
192 span.add(this.getFullBounds());
193

194 Iterator iterator = aCollectionOfNodes.iterator() ;
195 while (iterator .hasNext()) {
196 Object o = iterator .next() ;
197 if (o instanceof PNode) {
198 PNode node = (PNode) o;
199 span.add(node.getFullBounds());
200

201 // If there is at least one PNode, the return value is true
202 returnValue = true;
203 }
204 }
205

206 if (returnValue == true) {
207 PActivity resizement = animateToBounds(span.getX(), span.getY(),
208 span.getWidth(), span.getHeight(), DEFAULTDURATION);
209

210 getRoot().addActivity (resizement);
211 resizement.setStartTime(System.currentTimeMillis());
212 }
213

214 getParent().addChild(this);
215

216 return returnValue;
217 }

Removing Selection As an alternative to the menu entry for removing the selection rect-
angle, CTRL-W, can be used. Both call removeSelection() at the WildDocs instance, which

164

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 165 — #167 i
i

i
i

i
i

4.4. Interaction

firstly checks if a rubber band exists:

[WildDocs.java | removeSelection()]

1674 public void removeSelection() {
1675 if (getRubberBand() != NO_RUBBERBAND) {
1676 getRubberBand().removeFromWildDocs();
1677 }
1678 }

An existing rubber band will be removed from the WDRubberBand instance by calling
removeFromWildDocs(), which finally triggers removeFromWildDocs(long), passing the de-
fault duration for fading out.

One problem occurred by writing the code for fading out and removing the selection rect-
angle from the WildDocs space. Because fading takes some time, the deletion was performed
before the fading finished. The user did not see any fading.

One possible way to solve this problem would be Java threads. However, Piccolo is not
thread safe. We used Piccolo’s nested class PActivity.PActivityDelegate instead. It allows the
setting of specific behavior that is called during the activity:

[WDRubberBand.java | removeFromWildDocs(long)]

241 public void removeFromWildDocs(long aFadeOutDuration) {

250 PActivity activity = animateToTransparency(0f, aFadeOutDuration);
251 PActivity .PActivityDelegate delegate = new PActivity.PActivityDelegate() {
252 public void activityFinished (PActivity a) {
253 getWildDocs().getLayer().removeChild(getThisRubberBand());
254 }
255

256 public void activityStarted (PActivity a) {
257 }
258

259 public void activityStepped(PActivity a) {
260 }
261 };
262 activity .setDelegate(delegate);
263

264 }

The actual fading out is triggered at line 250. Line 262 adds the information to remove
it after it is finished. Without removing, it would be completely transparent and therefore
invisible, but still existing.

Moving Selected Nodes Finally, moving all nodes that intersect with the selection rectan-
gle can be initiated by a menu entry or preferably by CTRL-M. Both interactions call move|'
&|SelectionToCurrentPosition() at the associated WildDocs instance:

[WildDocs.java | moveSelectionToCurrentPosition()]

1683 public void moveSelectionToCurrentPosition() {
1684 if (getRubberBand() != NO_RUBBERBAND) {
1685 WDTempNodeStorage selected = getRubberBand().intersectDocs();

1692 getLayer().addChildren(selected);
1693

165

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 166 — #168 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

de.atzenbeck.wilddocs.storages

«realize»

edu.umd.cs.piccolo.util

«interface»
WDFilter

«interface»
PNodeFilter

AdornmentFilter BindingMechanismFilter …ChildrenFilter

Figure 4.19.: Filters class diagram (package filters)

1694 new WDNodeDragger(this).dragCenterToPosition(selected,
1695 currentMousePositionOnCamera());
1696 getRubberBand().removeFromWildDocs();
1697 }
1698 }

If the check for the existence of the rubber band at line 1684 turns out positive, an array
of all selected nodes is returned by the WDRubberBand instance. This is done by adding all
nodes and filtering those that are documents and intersect with the rubber band:

[WDRubberBand.java | intersectDocs()]

271 public WDTempNodeStorage intersectDocs() {
272 WDTempNodeStorage intersect = new WDTempNodeStorage();
273 intersect .addAll(getWildDocs().getLayer().getChildrenReference());
274 intersect .keepFiltered(new DocumentFilter());
275 intersect .keepFiltered(new IntersectionFilter (this)) ;
276 return intersect ;
277 }

In order to have all selected nodes on top, they are added again to the layer (line 1692).
Through that, their index is higher than the remaining nodes and they appear above. Then,
a new instance of WDNodeDragger drags all selected nodes to the current mouse position
(line 1694). Finally, the rubber band calls the fading out action and is removed from the
space.

4.5. Miscellaneous

4.5.1. Filters

WildDocs makes extensive use of filters for isolating groups of nodes. All filters are part of the
package de.atzenbeck.wilddocs.filters. A complete list of WildDocs filter classes can be found
in Tab. 4.1 on page 80. They implement the interface WDFilter, which extends PNodeFilter.
The latter one is provided by Piccolo. Figure 4.19 shows the class relationships.

WDFilter classes implement two methods: accept(PNode) and acceptChildrenOf(PNode).
Both return boolean values. The first one returns true if a node is accepted by the filter. The
second method returns true if the filter should also test a node’s children for acceptance.

166

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 167 — #169 i
i

i
i

i
i

4.5. Miscellaneous

Filters are widely used, for instance, by WDClusterRecognizer. It uses AdornmentFilter,
DescendentFilter, IntersectionFilter, and LargerNodeIndexFilter. Many filters require an addi-
tional attribute that is used for the comparison.

Paradigmatically, we explain how NodeInBetween works. It filters all nodes that are in
between two given nodes. The constructor takes both nodes and associates the top and bottom
one according to their index. An instance of WDIndexComparator does the calculation:

[NodeInBetween.java | NodeInBetween(PNode,PNode)]

53 public NodeInBetween(PNode aNode1, PNode aNode2) {
54 if (new WDIndexComparator().compare(aNode1, aNode2) == 1) {
55 setTopNode(aNode1);
56 setBottomNode(aNode2);
57 } else {
58 setTopNode(aNode2);
59 setBottomNode(aNode1);
60 }
61 }

The method accept(PNode) will return true if the instance of WDIndexComparator returns
the information that the given node is below the top node and above the bottom node. Other-
wise, false will be returned:

[NodeInBetween.java | accept(PNode)]

88 public boolean accept(PNode aNode) {
89 WDIndexComparator comparator = new WDIndexComparator();
90 if (comparator.compare(aNode, getTopNode()) == −1
91 && comparator.compare(aNode, getBottomNode()) == 1) {
92 return true;
93 } else {
94 return false;
95 }
96 }

The filter always returns true for acceptChildrenOf(PNode) to force all nodes to be checked.
However, this is not necessary, because a node’s children return the same result as the node
itself. Therefore, false should be returned instead.

4.5.2. Index Comparison

The package de.atzenbeck.wilddocs.comparators contains classes used for comparisons. Cur-
rently, only WDIndexComparator exists. It implements Java’s interface Comparator. This
class compares two nodes with respect to their index sequence.

Each Piccolo node has a unique index ID among siblings of the same parent. Piccolo draws
nodes with higher index above those with lower numbers. The class WDIndexComparator
creates a path containing the indices of all ancestors of a given node. Those paths can be
compared to find the correct relation among two nodes.

The method index(PNode) returns the inverse path sequence of a given node.
[WDIndexComparator.java | index(PNode)]

66 public WDTempNodeStorage index(PNode aNode) {
67 WDTempNodeStorage reverseIndices = new WDTempNodeStorage();
68 PNode node = aNode;

167

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 168 — #170 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

69 while (!node.equals(aNode.getRoot())) {
70 reverseIndices
71 .add(new Integer(node.getParent().indexOfChild(node)));
72 node = node.getParent();
73 }
74

75 /∗
76 ∗ Return the reversed sequence, so that the node comes last, after all
77 ∗ its parents.
78 ∗/
79 return reverseIndices.reverseSequence();
80 }

An instance of the class WDTempNodeStorage is created at line 67. The index of the
passed node and the indices of its ancestors will be added to the temporary storage. Finally,
the reversed sequence is returned.

The interface Comparator requests the method compare(Object,Object):
[WDIndexComparator.java | compare(Object,Object)]

127 public int compare(Object o1, Object o2) {
128 return compareNodes((PNode) o1, (PNode) o2);
129 }

Assuming that it receives only PNode instances, it casts the objects and passes them to
compareNodes(PNode,PNode):32

[WDIndexComparator.java | compareNodes(PNode,PNode)]

90 private int compareNodes(PNode aNode1, PNode aNode2) {
91 WDTempNodeStorage path1 = index(aNode1);
92 WDTempNodeStorage path2 = index(aNode2);
93

94 /∗
95 ∗ Add delimiter −1. This takes care if one path is shorter than the
96 ∗ other and delivers the correct return value.
97 ∗/
98 path1.add(new Integer(−1));
99 path2.add(new Integer(−1));

100

101 if (path1.equals(path2)) {
102 return 0;
103 } else {
104 int i = 0;
105 int idxPath1;
106 int idxPath2;
107 /∗
108 ∗ This loop should terminate in any case, since path1.equals(path2)
109 ∗ has been checked already. The delimiter −1 will take care in case
110 ∗ one path is shorter than the other.
111 ∗/
112 do {
113 idxPath1 = ((Integer) path1.get(i)) . intValue () ;

32There should be an exception handling implemented for cases when the passed object is not an instance of PNode.

168

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 169 — #171 i
i

i
i

i
i

4.5. Miscellaneous

Node Index path (including delimiter)
0 1 2 3 4 5

A 1 0 0 3 8 −1
B 1 0 0 1 −1

Table 4.5.: Example of index paths

java.util de.atzenbeck.wilddocs.storages

WDTempNodeStorageArrayList WDObjectStore

Figure 4.20.: Storage classes diagram (package storages)

114 idxPath2 = ((Integer) path2.get(i)) . intValue () ;
115 i++;
116 } while (idxPath1 == idxPath2);
117

118 return (idxPath1 < idxPath2) ? −1 : 1;
119 }
120 }

Firstly, the method requests the index paths of both given nodes and adds −1 as delimiter
to them at the very end. If both paths are equal, zero will be returned; otherwise, the method
loops through index by index and compares them to each other. As soon as there are two
indices that differ, it leaves the loop and returns either −1 or 1, depending on whether the
index of the first or second path is smaller.

Table 4.5 shows an example. Two nodes, A and B, depict their index path as delivered
by index(PNode). The node’s index stands right before the delimiter −1, which is index 8
for node A and index 1 for node B. The comparison starts at position 0, where both indices
are equal. The loop proceeds until position 3, where A has 3 and B has 1 at its index path.
Assuming that node A was the first passed parameter, the return value will be 1.

4.5.3. Storage

The package de.atzenbeck.wilddocs.storages includes classes for temporarily or persistently
storing documents. Figure 4.20 depicts the relationships of WDTempNodeStorage and WD|'
&|ObjectStore, discussed below.

Temporal Object Store

WildDocs uses WDTempNodeStorage for temporary storage, intended for nodes. It extends
Java’s class ArrayList. Its constructor calls the superclass:

[WDTempNodeStorage.java | WDTempNodeStorage()]

64 public WDTempNodeStorage() {

169

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 170 — #172 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

65 super();
66 }

A given collection is passed to ArrayList:

[WDTempNodeStorage.java | WDTempNodeStorage(Collection)]

68 public WDTempNodeStorage(Collection aCollection) {
69 super(aCollection);
70 }

In the following, we describe the most important extensions of WDTempNodeStorage: The
method sortNodesOnIndex() passes the node storage instance including a newly created in-
stance of WDIndexComparator to sort(List,Comparator) in Java’s Collections class (package
java.util).

[WDTempNodeStorage.java | sortNodesOnIndex()]

110 public WDTempNodeStorage sortNodesOnIndex() {
111 Collections.sort (this , new WDIndexComparator());
112 return this ;
113 }

Two methods return the node with the lowest or highest index of those stored within the
temporary storage. For the node with the lowest index, a clone of the instance is sorted and
the first entry returned:

[WDTempNodeStorage.java | getLowestIndexNode()]

79 public PNode getLowestIndexNode() {
80 WDTempNodeStorage sortedList = ((WDTempNodeStorage) this.clone())
81 .sortNodesOnIndex();
82 if (sortedList . isEmpty()) {
83 return NO_NODE;
84 } else {
85 return (PNode) sortedList.get(0);
86 }
87 }

The method for finding the node with the highest index looks similar, except for line 85.
Instead of the first entry, the last one is returned:

[WDTempNodeStorage.java | getHighestIndexNode()]

100 return (PNode) sortedList.get(sortedList.size () − 1);

reverseSequence() reverses the current order of references. Two other important meth-
ods are keepFiltered(WDFilter) and removeFiltered(WDFilter). The first keeps only those ref-
erences that are accepted by a given filter. The second one removes the accepted object
references from the WDTempStorage instance. Both call the method processWithFilter(W|'
&|DFilter,boolean) with the given filter and a switch as parameter. The parameter is either
KEEP (set to true) or DELETE (set to false):

[WDTempNodeStorage.java | processWithFilter(WDFilter,boolean)]

165 private WDTempNodeStorage processWithFilter(WDFilter aFilter,
166 boolean aInverseSwitch) {
167 WDTempNodeStorage deletedObjects = new WDTempNodeStorage();
168 if (aFilter == null) {
169 return null ;

170

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 171 — #173 i
i

i
i

i
i

4.5. Miscellaneous

170 } else {
171 Iterator iterator = new HashSet(this).iterator() ;
172 while (iterator .hasNext()) {
173 PNode node = (PNode) iterator.next();
174

175 // false for remain, true for delete
176 if (aFilter .accept(node) == aInverseSwitch) {
177 this .remove(node);
178 deletedObjects.add(node);
179 }
180

181 // false for remain, true for delete
182 if (aFilter .acceptChildrenOf(node) == aInverseSwitch) {
183 ArrayList children = new ArrayList();
184 children .addAll(node.getChildrenReference());
185 this .removeAll(children);
186 deletedObjects.addAll(children) ;
187 }
188 }
189 return deletedObjects;
190 }
191 }

This method iterates through all stored object references and removes all nodes and their
children that are accepted or that are not accepted by the given filter, depending on whether
KEEP or DELETE was passed (see line 176 and 182). All deleted objects are returned.

Object Store

The package storages contains classes for storing WildDocs objects. The class ObjectStore
was an early and basic implementation of a persistent object store. WDObjectStore is a newer
version with special support for WildDocs; however, it is still in an early development state
and has not reached its full functionality yet. It is intended for saving or loading objects.
It extends WDTempNodeStorage. Its main methods are update(), saveObjects(String), and
loadObjects(String).

update() takes all nodes and keeps only instances of WDDocument and WDBinding|'
&|Mechanism. All other instances, for example, adornments (WDAdornment) are ignored,
because they can be recalculated at any time later:

[WDObjectStore.java | update()]

84 public void update() {
85 // clear and get all nodes that are on layer
86 clear () ;
87 WDTempNodeStorage all = new WDTempNodeStorage(getWildDocs().getLayer()
88 .getAllNodes());
89

90 if (! all . isEmpty()) {
91 // filter all documents
92 WDTempNodeStorage docs = (WDTempNodeStorage) all.clone();
93 docs.keepFiltered(new DocumentFilter());
94

171

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 172 — #174 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

95 // filter all binding mechanisms
96 WDTempNodeStorage mech = (WDTempNodeStorage) all.clone();
97 mech.keepFiltered(new BindingMechanismFilter());
98

99 // add documents and binding mechanisms
100 addAll(docs);
101 addAll(mech);
102

103 // sort sequence
104 sortNodesOnIndex();
105 }
106 }

saveObjects(String) saves all objects that are referenced by the WDObjectStore instance to
a file. loadObjects(String) loads objects from a given file path into the object store instance.
The file paths for saving or loading are represented as strings.

4.5.4. File Access

File Selection Dialog Window

When loading new documents to the WildDocs space, FileChooser takes care of the GUI
supported selection of files. It is part of the package util. Multiple file selections are supported.
The user can call the file dialog box by selecting the “Import Documents. . . ” menu entry. The
class contains only one method:

[FileChooser.java | getFiles(WildDocs)]

47 public static File [] getFiles(WildDocs aWildDoc) {
48 JFileChooser fc = new JFileChooser();
49 fc .setMultiSelectionEnabled(true);
50 fc .showDialog(aWildDoc, "Load");
51 return fc .getSelectedFiles() ;
52 }

Loading and Saving Text

The class WDTextLoader loads a given text file and returns its content as string. The file
is represented as an instance of Java’s class URI and handed over to the method load(UR|'
&|I). WDTextLoader is used, for example, by loading plain text documents onto the WildDocs
space.

WDTextSaver saves a given string as plain text file. This class is used, for example, for
saving the gathered statistics to an external file. The file name is accepted as an instance of
URI or as string: save(URI,String) or save(String,String).

4.5.5. Boxes and Rotation Point (Obsolete)

For the sake of completeness, also the classes WDBox and WDRotationPoint shall be men-
tioned. Both can be found in package util. WDBox was designed as multi-purpose box, for
example, for drawing graphical representations of binding mechanisms. It extends Piccolo’s

172

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 173 — #175 i
i

i
i

i
i

4.5. Miscellaneous

class PPath and supports unit conversions by using WDUnitConverter. It is currently not in
use.

The idea behind WDRotationPoint is to have a class for center marks including their graph-
ical representation. They would appear on purposeful rotation. This class is not imple-
mented yet. Instead, WDNodeRotator creates a Piccolo PPath instance and sets the desired
attributes. The method paintRotationMiddleMark() is triggered at WDNodeInputEventHandler,
as explained on page 157.

173

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 174 — #176 i
i

i
i

i
i

Chapter 4. Application Design and Implementation

174

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 175 — #177 i
i

i
i

i
i

Chapter 5.

Experimental Design and Evaluation

“Enough research will tend to
support your theory.”

(Murphy’s Law of Research)

5.1. Goals

The main goal of our experiment is to try to falsify our hypotheses (discussed in Chap. 3),
following the philosophy of science theories of Karl Popper (Popper et al., 2001). We want
to test the influence of variable sized documents, extended zooming, and incidental rotation
for information organizing and finding on WildDocs, a 2D spatial application. Additionally,
we want to evaluate some other observations, discussed in Sect. 5.3. Section 5.2 describes
the test setup, Sect. 5.4 concludes both, the statistical evaluation as well as the descriptive
observations. Statistics is supported by Field & Hole (2003), which we consulted mainly for
finding appropriate tests and answers to other statistics related questions.

5.2. Method

5.2.1. Test Laboratory

We set up a laboratory for performing tests on WildDocs. Figure 5.1 shows a picture of
the laboratory from the investigator’s viewpoint when standing. The front row was for the
participant, the tables behind for the investigator. We used four computers, three external 17-
inch and two built-in screens, and two Digital Video (DV) cameras. The participants worked
on a Pentium IV machine (3.4 GHzHT, 2 GB DDR2 RAM, ATI Radeon X600) running Wild-
Docs on Java 1.5 on Windows XP. Additionally, a VNC server (RealVNC Ltd, 2005) and a
screen capture application were started. The latter one produced screen capture movies of
the full screen. There was a second screen for the participants that showed an introduction
movie, task descriptions, or questions to be worked on. This screen was connected to the
investigator’s main computer, an Apple PowerBook G4 (15-inch, 1.67 GHz).

This portable computer was used to control the content of the introduction screen, such
as starting an introduction video or displaying questions to the participant. It also captured
the main part of this external screen as a movie. Furthermore, the PowerBook was used to
time organization and search periods as well as to add notes, answers, or comments which
participants gave to pre or post-test questions. Additionally, it saved the DV video stream
from camera 1 to an external hard drive.

We used a second Apple PowerBook G4 (12-inch, 887 MHz) to store the DV video stream
from camera 2. Another Pentium IV computer (2.5 GHz) on the investigator’s desk served as

175

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 176 — #178 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Participant
Main computer running
WildDocs, screen capture
facilities, and a VNC server

DV camera 1
capturing
participant

DV camera 2 capturing
keyboard, mouse area
and main screen

Introduction
screen

VNC client for monitoring
main computer and running
screen capture facilities

Investigator’s computer for controlling
introduction screen, timing answers, writing
notes, filling questioner, saving video stream
from camera 1, and running a screen capture
application for introduction monitor

Computer saving
video stream from
camera 2

Figure 5.1.: Test laboratory setup

176

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 177 — #179 i
i

i
i

i
i

5.2. Method

Camera 2 Sceen capture of
WildDocs GUI (full screen)Camera 1 Screen capture of window

content on introduction screen

Figure 5.2.: Compilation of video material captured during a session

remote control for the participant’s machine that ran WildDocs. A VNC client allowed the
investigator a closer look at the participant’s screen as well as easy setup tasks on WildDocs
without leaving his workspace, for example, loading a new document set or changing the
application version before the next participant came in. Because the screen capture on the
main WildDocs machine was not reliable,1 a screen capture movie of the VNC client window
in full screen mode was recorded additionally.

As mentioned above, we installed two cameras, each of them sending the video stream to
one of the PowerBooks to be stored on a hard drive directly. Camera 1 captured the partic-
ipant’s face, camera 2 the area where the participant’s keyboard and mouse were located as
well as the screen of the machine running WildDocs. The stream was stored in raw DV format
and was compressed to H.264 and MPEG-4 AAC codec overnight or on weekends. For most
sessions, we compiled completely or partly the gathered video material into a synchronized
single movie file, as depicted in Fig. 5.2. This turned out to be very useful for post-analysis
of video data.

5.2.2. Test Applications

There are four different WildDocs versions. Each of them differs slightly from the others.
Table 5.1 gives an overview of the implemented features for each version. We will evaluate
some of them in Sect. 5.3. There are three main groups of features addressing the focus of this

1Occasionally, the saved screen capture was damaged and could not be opened or repaired.

177

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 178 — #180 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Feature v1 v2 v3 v4

Zooming (main feature)
– Menu zoom (stepwise zooming) • • • •
– Keyboard shortcut for menu zoom •
– Smooth zooming •
– Quickzoom •

Rotation and sloppiness (main feature)
– Incidental rotation and sloppiness •
– Purposeful rotation •

Object size (main feature)
– Resizable objects •
– Fixed size • • •
– Desk metaphor • • •

Object movement
– Drag object • • • •
– Push object to left/right • • •
– Push object to foreground/background • • • •
– Auto push object to foreground • • •
– Move selected objects shortcut • • • •

Navigation
– Drag background • • • •
– Scrollbars • • •

Straighten stacks • •

Table 5.1.: WildDocs application features

178

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 179 — #181 i
i

i
i

i
i

5.2. Method

L
left
←

R
right
→

U
up
↑

A
select

☑

D
down
↓

M
move
⤵

W
wipe
✗

S
straight
↠↞

0
in
⇲

=
100%

☉

–
out
⇱

Z
quick
↗↙

Select, Move Front, Back Left, Right Straighten Menu Zoom

v4

v3

v1

v2

Quickzoom

Figure 5.3.: Keyboard labels used for different WildDocs versions

work: zooming, rotation and sloppiness, and fixed versus variable size objects. All versions
have log file support to report the used area dimensions or counts of selected feature usage,
for example, quickzoom, smooth zooming, purposeful rotation, or clicks on bounds handles.
A complete list of logged information can be found in Sect. B.2.

Version dependent shortcut keys support the user in working with WildDocs. All shortcut
keys are to be pressed in combination with CTRL. Figure 5.3 depicts all the labels that were
put on the physical keyboards. Every WildDocs version had its individual keyboard with all
shortcuts marked. The intention was to help the user remembering the keys, since the learning
phase was short. Figures 5.4 to 5.7 show pictures of the different keyboards. Even though
all keyboards were Danish, the software-based keyboard mapping was US English. This only
affected some keys for v2 , whereas the keys for all other used shortcuts had identical positions
on Danish and US English keyboard layouts.

WildDocs version designations consist of the letter “v”, followed by a number between 1
and 4: v1 , v2 , v3 , and v4 . “v” is an abbreviation of “version”, the number stands for the
version number. Because our experiment had groups each assigned to one specific WildDocs
version only, we named those groups also by the WildDocs version they have used.

WildDocs v4

WildDocs v4 is the basic WildDocs application. Its main feature is support for fixed sized
documents. There is a space on which fixed sized pages can be dragged using the mouse. It
is not possible to resize those. There is a brown rectangle in the background that symbolizes
a desk. However, the space outside the desk metaphor can also be used to place pages. We
will statistically compare results of this version to the three other WildDocs versions.

Beside using the mouse to drag and drop single pages, there are keyboard shortcuts for
moving objects. Those include pushing the node below the cursor to the very back (CTRL-D
for “down”) or to the very front (CTRL-U for “up”) as well as pushing the node below the
cursor to the left (CTRL-L) or to the right (CTRL-R). Figure 5.4 depicts those and others
marked on the keyboard.

There is also behavior implemented that pushes a dragged page automatically to the fore-
ground when it leaves the scope of the above positioned pages. Details of the relevant class
WDNodeIndexPusher are discussed in Sect. 4.3.4. A selection feature (CTRL-A) selects all
pages that intersect with the selection rectangle. Another shortcut (CTRL-M) moves them to
the position where the cursor is located. The so moved documents will be aligned to a straight

179

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 180 — #182 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Figure 5.4.: Picture of WildDocs v4 keyboard with marked shortcut keys (W, R, U, A, S, D,
L, M)

looking pile. After CTRL-M is pressed, the selection rectangle will fade out. The shortcut
CTRL-W removes a selection area without moving documents.

Navigation of the space is possible through dragging the background. Additionally, scroll-
bars are switched on when the occupied area does not fit completely into the visible area.

Another keyboard shortcut (CTRL-S) allows to straighten stacks. All documents that inter-
sect with the cursor’s position will be centered at that spot. This results in a straight looking
pile. It looks exactly the same as if those pages would have been selected (CTRL-A) and
moved (CTRL-M).

Like all other versions, v4 allows stepwise zooming via the zoom menu. The user can
decide to zoom in to 125 % or zoom out to 80 % relative to the current scale, or reset the
zoom scale to 100 %. The zoom menu entries cannot be accessed via keyboard shortcuts.

WildDocs v3

WildDocs v3 is similar to v4 ; however, it has incidental rotation and sloppiness as well as
purposeful rotation implemented. Incidental rotation was originally implemented in a way
that rotation was applied to the dragged node in real time while being dragged, depending on
speed, direction, virtual position of the user, and a random factor, as described in Sect. 4.3.1.
However, due to technical limitations, we reduced this behavior to random rotations on mouse
press and release actions only.2

Purposeful rotation allows the user to rotate an object easily by double clicking on it and
holding the mouse button at the second click. The rotation angle can now be changed by
moving the mouse toward the desired direction. The document’s angle will follow the mouse.

Another difference to v4 is that v3 does not support to straighten piles with CTRL-S.
This would be in contradiction with the intended emerging sloppiness. The move shortcut
(CTRL-M) for moving selected nodes works also for v3 ; however, realistic random offsets as
well as random rotation angles will be applied to each moved page. Random offset as well

2We developed WildDocs in Java on Mac OS X. All tests on this machine were performed without problems. The
final test took place on a computer running Windows XP. On this machine, incidental rotation frequently caused
the window content to grey out. We experienced the same malfunction occasionally on Linux. Because this
problem could not be solved within a reasonable amount of time, we decided to base incidental rotation on clicks
(mouse release events). We consider this as a good alternative that also provides spatial structures that look
similar to paper on a desk.

180

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 181 — #183 i
i

i
i

i
i

5.2. Method

Figure 5.5.: Picture of WildDocs v3 keyboard with marked shortcut keys (W, R, U, A, D, L,
M)

Figure 5.6.: Picture of WildDocs v2 keyboard with marked shortcut keys (0, –, =, W, R, U,
A, S, D, L, Z, M)

as random rotation are both based on simple real world observations. Figure 5.5 shows all
shortcuts marked on the keyboard that are available for v3 .

WildDocs v2

The main feature of WildDocs v2 is enhanced zooming. There are four different zooming
interactions implemented: menu zoom via mouse, menu zoom via keyboard shortcut, smooth
zooming, and quickzoom.

The menu zoom exists as in v4 ; however, the user can activate those commands also by
keyboard shortcuts: CTRL-0 for zoom in, CTRL-- for zoom out, and CTRL-= for zoom
reset. As already mentioned above, the test application follows an US English keyboard
layout whereas the physical keyboard used for testing was Danish. This only affected the
menu zoom shortcuts. Because we used marked keys and informed the participants of group
v2 about the US English layout at the beginning of every test session, we did not experience
any problem. Figure 5.6 shows a picture of the keyboard. The menu zoom keys are side by
side. All zooming related shortcuts were marked in pink, whereas the others were marked in
bright yellow, such as all shortcut labels of other versions.

Smooth zooming is another zoom method implemented in v2 . It is accessible through
pressing the right mouse button on the background and moving the mouse to the right for

181

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 182 — #184 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Figure 5.7.: Picture of WildDocs v1 keyboard with marked shortcut keys (W, U, A, D, M)

zooming in or the left for zooming out. The further the mouse moves away from the original
point where it was pressed, the faster zooming becomes. This action is stopped as soon as the
right mouse button is released.

The forth method for zooming is quickzoom. Pressing CTRL-Z zooms out until all objects,
including the desk metaphor, are visible on the screen.3 The next quickzoom call zooms back
to the former scale level to the position where the cursor is located at activation. CTRL-Z
enables the user to zoom out completely and zoom back to a desired position very quickly.
Zooming back is only active if no other zoom method, such as menu zoom or smooth zoom-
ing, is called. Other zoom actions cause the next quickzoom call to zoom to the level where
all objects fit into the visible area. Quickzoom is animated. This supports the user in under-
standing the spatial relation of departure and destination location.

Because we intended to encourage navigation through zooming, scrollbars are disabled for
this version.

WildDocs v1

The main difference between v1 and v4 concerns the object size. WildDocs v1 does not
support fixed size objects, but they can be resized by the user through dragging one of eight
bounds handles located on the the object’s corners or sides. The left screenshot of Fig. 5.8
depicts those bounds handles. By increasing an object’s size, text objects show more of its
content whereas images become magnified and show a distortion if not resized proportionally.

Versions supporting fixed size documents are based on the idea of implementing limitations
in a way that users are familiar with. Because v1 does not follow this idea, we did not
implement a desk metaphor.

Shortcuts for pushing the object below the cursor to the right or left, automatically pushing
a dragged object to the front when leaving the scope of the ones above, or the possibility to
straighten piles are disabled. We left those features out, because they are closely related to the
use of large sized documents, as they existed in our test for versions supporting fixed sizes,
where CTRL-L or CTRL-R as well as CTRL-S were implemented to browse piles more
efficiently or to save space due to neatly shaped stacks. Because of the small size as well as
the rather unequal rectangular shapes of objects once they were resized, those features would
not support the main focus of this version. This is similar to automatically pushing a node

3This could also be activated by selecting the “Toggle Quickzoom” menu entry located at the zoom menu. However,
we did not experience any participant using the menu entry instead of the keyboard shortcut for quickzoom.

182

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 183 — #185 i
i

i
i

i
i

5.2. Method

to the front, because we expected that objects of this version would be kept rather small and
therefore would lose the scope of the above positioned objects quickly.

5.2.3. Documents and Questions Sets

Documents

Document IDs (DID) consist of the letter “d” for “document”, followed by a unique two digit
number.

Document vs Page We distinguish between documents and pages for versions supporting
fixed size. A document is a coherent text block that may include graphics. It may con-
sist of several pages, that are non-resizable rectangular objects on the screen. Pages can be
recognized through cohesion supporting visual attributes, such as similar typesetting, same
graphics on each page, or same page format. If neither coherence nor cohesion play a role in
our argumentation, we may refer to “objects on the screen” instead of using the term “pages”.

We did not use binding mechanisms for the experiment. Users were not able to bind pages
explicitly, for example, as book or put them into a binder. Even though pages are bound
through coherence and cohesion, they may be intentionally or unintentionally placed apart.

Variable size versions (v1) do not have the notion of pages. All objects are documents.
In our experiment, every participant had 29 documents for organizing and finding phases,
consisting of 56 single pages for versions supporting fixed size (v2 , v3 , and v4).

Document Types There were two different document sets, one for variable size versions
(v1), the other for versions supporting fixed size (v2 , v3 , and v4). The reason for this was
different capabilities of WildDocs versions4 as well as a tight coupling of certain attributes to
page-based or versions supporting fixed size, such as the notion of landscape vs portrait page
formats. Each WildDocs version had 29 documents loaded during the main test. Table 5.2
marks both sets at the top (rows “Variable size” and “Fixed size”). Document d24 to d29
were exclusively for versions supporting fixed size, document d30 to d35 exclusively for v1 .
Document d01 to d23 were used by all versions.

The table shows a list of attributes. Symbols in parentheses next to the attribute names
indicates whether an attribute exists for variable size (G#), fixed size (H#), or both document
sets (). The additional letter “o” or “h” within the parentheses indicates whether we interpret
questions to this attribute as “obviously” visible or rather “hidden”. This is used and further
discussed in Sect. 5.3.3.

Marks within document columns (#, G#, H#, or) show which attributes a document owns.
This is dependent on the document set as well as on the availability of attributes for them.
For example, d07 is available in both document sets. One attribute is “small graphical mark”.
However, this attribute is marked as existing only for fixed size versions (H#). That means that
there is no small graphical mark on document d07 for variable size documents, whereas there
is one for fixed size versions.

Different symbols are used in document columns, representing if there was a question for
the finding part that asked about an specific attribute. It also shows to which document set

4For example, v1 cannot display graphics included in text. This would request advanced support in calculating
complex layouts in real time.

183

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 184 — #186 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

A
ttr

ib
ut

e

d01
d02
d03
d04
d05
d06
d07
d08
d09
d10
d11
d12
d13
d14
d15
d16
d17
d18
d19
d20
d21
d22
d23
d24
d25
d26
d27
d28
d29
d30
d31
d32
d33
d34
d35

D
oc

um
en

ts
et

an
d

nu
m

be
r

of
pa

ge
s

–
V

ar
ia

bl
e

si
ze

(G#
)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

–
Fi

xe
d

si
ze

(H#
)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

–
Pa

ge
s

(H#
)

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

2
2

4
4

4
2

2
2

2
3

4
1

2
2

2
2

4
Pa

ge
fo

rm
at

–
L

an
ds

ca
pe

(H#
,o

)
#
#
#
#

#
H#

–
Po

rt
ra

it
(H#

,o
)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

Fo
nt

co
lo

r
–

C
om

pl
et

el
y

(
,o

)

#

#

–

Pa
rt

ly
(

,h
)

#

G#
G#

Fo
re

ig
n

or
sp

ec
ia

lf
on

t(
sh

ee
tm

us
ic

)
–

C
om

pl
et

el
y

(
,o

)
#
#
#

#
#

–
Pa

rt
ly

(
,h

)

G

ra
ph

ic
al

m
ar

k
–

Sm
al

l
(H#

,o
)

#
H#

H#
–

L
ar

ge
(H#

,o
)

#
H#

C
on

te
nt

ty
pe

–
G

ra
ys

ca
le

(
,o

)

–
L

ar
ge

fo
nt

(
,o

)
#

–
Sh

or
tt

ex
t

(
,o

)

#
#
#

–
L

ay
ou

t
(

,o
)

#

#
#

C
on

te
nt

m
ed

ia
ty

pe
–

Pi
ct

ur
e

on
ly

(
,o

)
#

#
#

#

–
Te

xt
on

ly
(

,o
)

#
#
#
#
#

G#
#
#
#
#
#
#
#

#
#

#
#
#
#
#
G#
#
#
#
#
G#

–
Te

xt
w

/fi
gu

re
(H#

,h
)

H#
(G#

)=
at

tr.
ex

is
ts

fo
rv

ar
ia

bl
e

si
ze

;
(H#

)=
at

tr.
ex

is
ts

fo
rfi

xe
d

si
ze

;
(

)=
at

tr.
ex

is
ts

fo
ra

ll
do

c
se

ts
;

(o
)=

“o
bv

io
us

”
at

tr.
;

(h
)=

“h
id

de
n”

at
tr.

;
#

=
at

tr
ib

ut
e

ex
is

ts
fo

rd
oc

um
en

t;
G#

=
at

tr
ib

ut
e

as
ke

d
in

v1
te

st
s;

H#
=

at
tr

ib
ut

e
as

ke
d

in
v2

,v
3

,a
nd

v4
te

st
s;

=

at
tr

ib
ut

e
as

ke
d

in
al

lt
es

ts

Table 5.2.: Visual attributes of documents

184

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 185 — #187 i
i

i
i

i
i

5.2. Method

a question was connected. An empty circle # indicates that this particular attribute existed;
however, it was not part of any question. A filled circle indicates that an attribute of the
particular document was used for a question for all versions. If the symbol shows a partly
filled circle on the left side G#, the attribute was used only for a question of the variable size
document set. If the filled part is on the right hand side H#, it was used for a fixed size related
question.

Page is an attribute of fixed size versions only. We used 11 single page, 13 two page, one
three page, and three four page documents. Even though v1 does not have the notion of
multiple pages, Tab. 5.2 shows numbers in italic font in the page row for document d30 to
d35. They represent the equivalent number of fixed size pages for those documents.

We used documents with visual attributes, such as page format, font color, foreign or spe-
cial font, graphical mark, specific content type, or media type. Page format is dependent on
pages, since objects in v1 can have arbitrary rectangular shapes. Font color was applied to
whole texts or parts of them. This also applies to foreign or special fonts. We included docu-
ments completely or partly written in Arabic, Hebrew, Greek, and Japanese5. There was also
sheet music as fixed size document.

There were also graphical marks on pages of some fixed size documents. We categorize
them in small or large marks. Small marks included logos or flags on top of the pages, whereas
large marks appeared as big yellow circles or large blue rhombi behind the text, covering most
of the width or height of the pages.

Some attributes were based on what we call content type, such as grayscale, large font, short
text, or layout. We had one question (q56) asking about a picture in grayscale (d01). This
attribute does not fit to any other category; therefore, we created a new one. Two documents
had exclusively large fonts (140 pt monospace font on document d19 and d20) and four had
a very short texts, only consisting of one sentence (d08, d09, d10, and d11). Some attributes
were layout related, such as a two-column (d24 or d28) or list layout (d07). The two-column
layout depends on fixed size documents, because currently WildDocs does not support ren-
dering of multiple column layouts in real time, which would be necessary for variable size
objects of this kind.

We name the last attribute group content media type. It classifies documents as picture, text,
or mix of both, according to their main appearance. For our experiment, we did not consider
graphical marks as a mixed type, because the mark was not part of the original content, but
had independent semantics and was added later by us. There was only one document that had
both (d24): a scientific article with a user pictogram on the second page.

We used documents of various content: Pictures showed different objects, such as nature,
buildings, humans, or animals. The other documents were taken form various areas, such as
computer science, fiction, or history.

Even though there were two document sets, we aimed to make both comparable. We were
able to use 23 of 29 documents for both sets and only added six additional ones per set. We
put efforts in designing and choosing those individual additional documents in a way that they
were equal with respect to our test setup and statistical evaluation.

Code Each document had a unique four digit code on top, as shown in Fig. 5.8. For fixed
size supporting versions with several pages per document, the code only appeared on the first

5Japanese (document d25) was only available for fixed size documents.

185

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 186 — #188 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Figure 5.8.: Codes on top of documents: variable size (v1 , left) and fixed size (v4 , right)

page. The participant was asked to read this code aloud after finding the correct document to
a question.

There were three reasons for using codes on documents and asking the participant to read
them aloud. Firstly, a document can be identified by that number. However, this was not the
most important argument, because the investigator was familiar with all documents and were
able to see instantly on the document’s appearance whether the participant found the right one
or not.

Secondly, and more importantly, the participant was forced to find the beginning of a doc-
ument. This was only relevant for fixed size documents that contained more than one page.

Thirdly, the most important argument for codes is to make sure that the user is forced to
zoom in to a level where he/she can read the content. For example, when asked about an easy
to recognize, large graphical symbol on a document, the user may find the document while
being fully zoomed out. However, he/she still needs some time to zoom in and adjust the
position so that the first page can be read.

This was an improvement of our pre-tests, where we asked participants to read the first
sentence of a document aloud. However, some of them interpreted “sentence” as “headings”,
others as “first sentence of the main text”. Because most headings were written in a larger font
size than normal text, we encountered unequal situations among those who read the heading
versus those who read the actual text. By introducing a code of equal size and position on all
documents, we unified this particular condition for all participants and made it comparable
for statistical evaluation.

The code was not considered as part of the document with respect to its visual attributes.
For example, a document that was completely written in blue font was still considered to be
completely written in blue, even though the code on top was in black letters.

Questions

Question IDs (QID) consist of the letter “q” for “question”, followed by a unique two digit
number.

Table 5.3 shows a list of question asked during the finding phases. The last column contains
the document IDs (DID) to which the questions refer to. They draw a connection to Tab. 5.2.

We divide questions into two groups, regarding how easy it is to see a certain visual at-
tribute. One group contains attributes that are easy to see, for example, the use of exclusively
red fonts on a document or a large yellow circle behind the text of each page. We refer to this
group as “obvious” visual attributes, in Tab. 5.3 marked as “(o)”. The other group contains
visual cues that are rather hidden, for example, a green written paragraph on the second page
or a paragraph written in Hebrew on the third page. We name this group “hidden” visual

186

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 187 — #189 i
i

i
i

i
i

5.2. Method

QID Question DID

Questions for versions supporting variable size only (G#)
q03 (o) Find the document about Abraham Lincoln. d13
q48 (o) Find the document that is about an application “iTeXMac”. d30
q49 (o) Find the document about post-structuralism. d35
q47 (h) Find the text that uses black fonts and has an orange written part. d32
q53 (h) Find the text that uses black fonts and has a green written part. d31

Questions for versions supporting fixed size only (H#)
q11 (o) Find the document that uses black fonts on landscape format. d23
q38 (o) Find the document that has a large yellow circle behind the text. d29
q39 (o) Find the document that has an AUE logoa on top. d25
q44 (o) Find the document that has the Danishb flag on top. d27
q31 (h) Find the document that has a figure on it that shows two user

pictograms as part of the figure.
d24

Questions for all versions ()
q04 (o) Find the document that uses exclusively red fonts and covers more than

3 lines.
d12

q05 (o) Find the document about interpretation of nature. d12
q09 (o) Find the document about the application “mpeg2decX”. d21
q12 (o) Find the document that is written in Arabic and is longer than 3 lines. d15
q13 (o) Find the document that is written in Greek and is longer than 3 lines. d16
q14 (o) Find the document that is written in Hebrew and is longer than 3 lines. d17
q19 (o) Find the document that uses exclusively green fonts. d22
q22 (o) Find the document that has large numbers and signs on it. d20
q23 (o) Find the document that contains only one sentence. This sentence is

written in English.
d08

q26 (o) Find the document that contains only one sentence. This sentence is
written in dark blue font.

d09

q30 (o) Find the document that contains only one sentence. This sentence is
written in brown font.

d10

q41 (o) Find the document that shows a list of smilies. d07
q54 (o) Find the picture that shows a red flower. d05
q56 (o) Find the picture that is in grayscale. d01
q57 (o) Find the picture that shows a cat. d57
q06 (h) Find the text that uses black fonts and has a blue written part. d14
q08 (h) Find the text that uses black fonts and has a red written part. d21
q15 (h) Find the document that is partly written in Arabic. d18
q17 (h) Find the document that is partly written in Hebrew. d22

(o) = “obvious” visual attribute; (h) = “hidden” visual attribute

aThe abbreviation “AUE” stands for “Aalborg University Esbjerg”. All participants were affiliated to this institute
and therefore were aware of the abbreviation and its logo.

bAll participants lived in Denmark and were aware of the appearance of the Danish flag.

Table 5.3.: Questions asked during finding parts of test sessions

187

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 188 — #190 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

attributes, marked as “(h)”. Table 5.2 relates those categories to the visual attributes of the
documents.

All questions start with “Find the . . . ” and end with “(Read the code on top of the document
aloud.)”6 Answers to questions were unique. There was only one correct answer per question.
However, there were three pairs of questions, each asking about the same document: q04 and
q05 both asked about d12, q08 and q09 about d21, and q17 and q19 about d22. Except for
the first mentioned pair, they contained one question related to an “obvious” and one related
to a “hidden” attribute.

There were the same set of 19 questions assigned for all sessions. Additionally, we added
five separate questions for each of both document sets. The question types were slightly
different; however, we attempted to find comparable ones for both document sets. For the
additional questions of variable size versions, we added three “obviously” visible attribute
questions. Each of them asked about the content of the document. The central terms of
the question7 was part of the document’s headline and therefore visible at the top of each
document. The remaining two questions, q47 and q53, were about documents that had partly
colored text.

Questions that were only asked in sessions with versions supporting fixed size include four
questions related to “obvious” attributes. q11 referred to the document’s format, q38 to large
marks, and q39 as well as q44 to small marks on documents. One additional question (q31)
was classified as being related to a “hidden” visual attribute.

5.2.4. Design

Pre-tests have shown that participants were not able to preform tests on more than one Wild-
Docs version in a concentrated way. The reason was that learning and organizing phase for
each tested version were necessary, but increased the total time spent drastically. The partic-
ipants’ concentration dropped after testing the first version. Asking participants to attend to
several tests at several times was not applicable due to organizational reasons. Therefore, we
designed a between-group test; each participant was ask to test exactly one WildDocs version.

We expected between 40 and 50 people to attend. In order to have an equal distribution
of participants per group, we created a pool of 40 pointers, ten assigned to each WildDocs
version. Each participant received one of the unassigned pointers randomly. After more than
35 tests were done, we added additional two pointers for each version and increased the total
number to 48.

5.2.5. Procedure

The test procedure was divided into three main parts: an introduction; an organizing phase;
and, a finding phase. The whole session was surrounded by pre- and post-test questionnaire
and explanations.

Pre-Test Phase

After welcoming the participant, the investigator gave a brief introduction on the test work-
flow and asked to read and sign a form that briefly describes the experiment and explains our

6The part that tells the participant to read the code aloud is not written in Tab. 5.3.
7Central terms were “Abraham Lincoln” for q03 ; “iTeXMac” for q48 ; and, “post-structuralism” for q49.

188

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 189 — #191 i
i

i
i

i
i

5.2. Method

information policy about the gathered data. The form is printed in Sect. A.1. Then, the inves-
tigator asked general questions, such as age, nationality, profession, experiences in computer
usage, etc. The results of most of those questions are discussed in Sect. 5.2.6. The complete
pre-test questionnaire can be found in Sect. A.2.

Introduction Phase

The introduction phase started with a movie that explained the used WildDocs version and
described briefly the different experiment phases. There was an individual introduction movie
for each version. They lasted between 5:44 (v1) and 9:20 Minutes (v2). The movie’s text
for each version can be read in Sect. A.3. The movie was displayed on the screen to the right
of the participant. He/she had the possibility to test WildDocs’s features while watching the
introduction. During that time, the WildDocs version had a small set of documents8 loaded
that were independent of the document set used later. The second part of the movie explained
the different phases of the test, organization and finding, and asked the participant to think
aloud when problems occur. For versions supporting fixed size, it also shows the difference
between documents and pages, as discussed in Sect. 5.2.3.

After the movie was finished, the investigator recalled the presented functions and asked
the participant to try them at least one time on the test document set. We wanted to be sure
that the participant was aware of all features after the introduction.

Because most of the first five participants had difficulties with recognizing foreign language
fonts, such as Arabic, Hebrew, or Greek, we introduced sample pages of all used foreign
fonts9 at the end of the introduction phase, starting with participant s06. Caused by this
change of the test workflow, we had to modify the set of data we took for evaluation, as
discussed in Sect. 5.3.1.

The participant was told that the four digit code on top of each document is not considered
as part of the document with respect to its visual attributes, as described in Sect. 5.2.3. For
participants with versions supporting fixed size (v2 , v3 , and v4), the investigator also pointed
out again the difference between documents versus pages and explained that pages of docu-
ments with more then one page will be put in a reverse sequence in the very beginning. The
participant was not told how many documents or objects there were on the screen.

Organization Phase

The investigator loaded the appropriate set of documents into WildDocs. They appeared at
the upper left corner of the screen as straight pile in version v1 , v2 , or v4 , as sloppy pile in
version v3 . Multiple page documents in versions v2 , v3 , or v4 had pages that belonged to the
same document next to each other, but their sequence was reversed, the last page was on top.
The organization phase was introduced with the task description on the introduction monitor:
“Organize the objects in a way that allows you finding them quickly afterwards.” The time of
organizing documents was measured. The results are discussed in Sect. 5.3.2. Statistics were
written in a log file after the participant finished organizing.

The test database allowed the investigator to add comments related to the organization
phase. Those comments were intended to be used for further analysis later. There were

8All participants had four objects on the screen for training. Users of v1 had two pictures and two RTF documents.
Users of the other versions had two pictures and one text document, containing two pages.

9Used foreign fonts were Arabic, Hebrew, Greek, and Japanese. The sample pages can be seen in Sect. A.4.

189

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 190 — #192 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

also fields for questions about organizing or finding that the investigator wanted to ask the
participant after the test, in addition to the predefined questionnaire.

Finding Phase

The finding phase consisted of 24 preselected questions in random order. As discussed in
Sect. 5.2.3, there were two sets of questions, depending on whether the participant used a
variable size or fixed size version.

Each question was displayed individually on the introduction screen at the participant’s
right hand side and stayed there until the question was completed. The participant was asked
to read the question aloud. The time between the user started searching till he/she started
reading the four digit code on top of the document was measured.

Occasionally, the investigator added further question specific information into the Wild-
Docs experiment database. This was intended to be used for later analysis. If a completed
question was not correctly answered, the investigator added “wrong” or “gave up”, depend-
ing on whether the user has chosen the wrong answer or gave up before finding the correct
document.

Similar to the comments about the organization phase, the investigator also added general
comments dedicated to the finding phase. Also the additional fields for adding questions
during the test to be asked after completion were available for finding related remarks.

Post-Test Phase

The post-test phase completed the session with a questionnaire. The participant was asked to
describe how he/she organized and found documents. Furthermore, the application was rated
by the user.10 The questions that were noted by the investigator during the test were asked. A
complete list of post-test questions can be found in Sect. B.1.

At the very end, the participant was asked whether he/she would like to have further infor-
mation or has specific questions about the project or the experiment. He/she was also asked
not to tell anyone who is scheduled to perform the test later about the project or session pro-
cedure until the experiment was finished. After the investigator’s appreciation for taking part
of the research project, the participant was released.

5.2.6. Participants

Each session was assigned to one single participant. The session ID contains the letter “s”,
followed by a continuous two digit number, starting with “01”. Participants are named after
their session number.

We had 45 volunteers for our experiment. All of them were affiliated to the Department
of Software and Media Technology, Aalborg University Esbjerg, Denmark. Most of them
were male (37 male, 8 female). They had various nationalities (29 Danish, 5 Chinese, 2
Indians, and a Belgian, Canadian, German, Italian, Jordanian, Portuguese, Russian, Amer-
ican, Venezuelan). There were 20 undergraduate and 17 graduate student volunteers. The
remaining 8 volunteers were staff members, all academic except of one who worked in the
administration.
10The statistical evaluation of the user ratings will be discussed in Sect. 5.3.6.

190

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 191 — #193 i
i

i
i

i
i

5.3. Statistical Results

●

●

●

●

20
25

30
35

40
45

50

Y
ea

rs

Age

●

●

20
40

60
80

H
ou

rs
 p

er
 W

ee
k

Computer
Usage

●

5
10

15
20

25

Y
ea

rs

Computer
Experience

●

●

●

6
8

10
12

14
16

18

Y
ea

rs

GUI
Experience

Figure 5.9.: Information about participants

Figure 5.9 depicts information about their age (Mdn = 25.0, M = 27.0, SE = .83)11 and
their experience in computers, such as hours of computer usage in a typical week (Mdn = 35,
M = 38, SE = 2.54), years of computer experience (Mdn = 11.0, M = 12.11, SE = .73),
or years of GUI experience (Mdn = 10.0, M = 10.27, SE = .51). Most of the participants
(N = 27) stated that they did not have experiences in spatial organization of objects on the
screen, whereas the other participants (N = 18) had. All of the participants confirmed that
nobody talked to them about the experiment before the test. They did not get any information
about the purpose of the test until the end of the session.

5.3. Statistical Results

5.3.1. Remarks on Skipped or Taken Out Questions

Most of the statistical calculations are based on finding phase related data, such as failure rate
for finding or time for finding correctly. Almost every participant had 24 questions. There
were a few exceptions to this. Some had fewer questions to answer. Therefore, all statistics
that are related to the number of questions are calculated as rate per asked questions.

We distinguish between skipped and taken out questions. Skipped questions are questions
that were not asked during the test. Taken out questions were asked during the test, but taken
out for most tests afterwards. Those cases are discussed below. There were 1080 questions
in total, 24 per participant. 16 of them (= 1.5 %) are marked as skipped and 28 (= 2.6 %) as
taken out.

Most statistical calculations are based on questions that were neither skipped nor taken
out. Otherwise, it is explicitly mentioned in the text. Examples for which we do not consider
skipped questions, but taken out ones are described in Sect. 5.3.4.

11The abbreviations stand for Median (Mdn), Mean (M), and Standard Error (SE).

191

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 192 — #194 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Participant s27

Participant s27 had WildDocs v4 (fixed size document support) assigned. He/she spent
7:55 Minutes for organizing. However, he/she did not spread the documents out on the vir-
tual desk, but kept them all visible on the screen. He/she did not zoom out and changed the
viewpoint on the visible are only slightly. Because of the small area used for organizing, the
document density was high. Finding documents took long. The investigator was not sup-
posed to interfere or give a time-out. Because this participant was patient, he/she spent up
to 7:18 Minutes trying to answer a single question. The finding phase for the first eleven
questions took 40 Minutes. Six of them were not answered correctly.

Participant s27 was the only one who spent lots of time for finding and was patient to
do so. Because the next participant was scheduled around that time, we decided to skip
the remaining 14 questions, without telling the participant that the test was planned to take
longer. This decision was also based on the assumption that s27 was an outlier. However, we
still consider the completed questions for our statistical evaluation. The post-test phase was
completed normally.

Participant s41

As mentioned in Sect. 5.2.3, there were slightly different sets of documents for WildDocs v1
and the other versions. Participant s41 had v2 assigned that would have required questions
for fixed size documents. However, because of a mistake by the investigator, questions of
the variable size document set were assigned. This mistake became obvious during the test.
There were five questions that were not part of the right question set. The first one was q03.
Even though it was not part of the question set, this question was answered correctly, because
the document existed also for fixed size versions. However, we still marked it as “taken out”,
to avoid differences to question sets of other fixed size document sessions. The next two
questions, q48 and q49, could not be answered, because the requested documents were not
part of the used set. They were also considered as “taken out”. The investigator realized that
a mistake happened and skipped the remaining two questions of the wrong question set, q47
and q53.

Participants s01, s02, s03, s04, and s05

As described in Sect. 5.2.3, there were documents that were partly or completely written in
Hebrew, Arabic, Greek, and Japanese. Some questions existed for the first three mentioned
font types. During the first five sessions it became clear that it was very difficult for partic-
ipants to answer questions that were based on those foreign language fonts. In most cases,
those failures were based on the participant’s lack of prior knowledge rather than based on
the created spatial structure. We did not investigate people’s existing knowledge of non-Latin
fonts. Therefore, we decided to introduce those four foreign font types before the test started.
We showed sample texts of one page per language to make the participant aware of the used
foreign fonts. The sample pages were not part of any document set.

There were only five questions related to foreign fonts, q12, q13, q14, q15, and q17, each
a member of both question sets. After the test was completed, we counted the number of
foreknowledge-based failures of those questions. The first five participants who did not see
the font sample pages did not answer 8 of 25 related questions correctly due to lack of prior

192

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 193 — #195 i
i

i
i

i
i

5.3. Statistical Results

●

●

v1 v2 v3 v4

0
50

0
10

00
15

00
20

00
25

00

WildDocs Version

S
ec

on
ds

Organization Time

●

●

v1 v2 v3 v4

10
20

30
40

WildDocs Version

A
ve

ra
ge

 S
ec

on
ds

 p
er

 O
bj

ec
t

Organization Time

Figure 5.10.: Time spent for organization task

knowledge. This is a rate of 32 %. The remaining participants had 198 related questions to
answer12 and got 13 of them wrong due to lack of existing knowledge, that is 6.57 %. Because
of this obvious change, we decided to take out the above mentioned five questions for the first
five participants.

5.3.2. Organizing Documents in WildDocs

Even though it is not part of our hypotheses, looking at the organization part helps us see some
differences and similarities among the used WildDocs versions. In this section, we focus on
the time spent for organizing the objects on the screen as well as on the occupied area.

Time

The independent variable is the WildDocs version; the dependent variable is the used time
in seconds for organizing. We consider v1 (Mdn = 285.0, M = 390.9, SE = 80.9), v2
(Mdn = 688.0, M = 838.6, SE = 141.3), v3 (Mdn = 1304, M = 1408, SE = 170.7), and
v4 (Mdn = 1144, M = 1235, SE = 159.8). Shapiro-Wilk tests and the evaluation of Q-Q
plots and histograms unveiled that v1 , v3 , and v4 are normally distributed, whereas v2 is
not (p = .01). We apply a transformation of log(x) on all samples in order to receive normal
distributions.13

Analysis of variance shows a significant effect (F(3,41) = 16.92, p < .001, r = .74). Lev-
ene’s test reports the assumption of homogeneous variances (F(3,41) = 1.27, p = .30) for log
transformed organization time. This is confirmed by F-tests. Therefore, we use the standard
t-test with Bonferroni correction (α = .05

3 = .0167) to try to falsify our hypotheses.

12It would have been 200 questions; however, two of them were skipped in session s27.
13Before the transformation, only v1 (p = .052), v3 (p = .08), and v4 (p = .89) were normally distributed; v2

(p = .01) was not. After transforming, the p-value increased for v1 (p = .98), v2 (p = .92), and v3 (p = .68),
but not for v4 (p = .58). Those tendencies are confirmed by examining Q-Q plots and histograms.

193

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 194 — #196 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Members of group v1 were significantly faster in organizing documents compared to those
of our control group v4 . The effect size is large14 (t(21) = 5.08, p < .001, r = .74).15 The
comparisons of v4 to v3 (t(19) = −.92, p = .37, r = .21) or v2 (t(21) = 2.02, p = .06,
r = .40) do not show a significant effect; however, the latter one reports a rather small p-value
and a medium to large effect size.

As mentioned in Sect. 5.2.1, the number of documents was equal for all versions. How-
ever, caused by fixed sizes and the notion of pages, v2 , v3 , and v4 each had 56 objects on the
screen, v1 only 29. Now, we consider the average seconds for organization per object, includ-
ing a log transformation. Levene’s test result does not change to the above mentioned one.
The analysis of variance still shows a significant effect (F(3,41) = 5.22, p = .004, r = .53).
Figure 5.10 depicts the absolute time as well as the average seconds per object used for or-
ganization, both without transformation. The interesting evaluation is how v1 compares to
our control group v4 . The relations of v2 or v3 to v4 stay the same, because the number of
objects on the screen did not change. However, because two of the above mentioned compar-
isons apply also for this test, we accept the same Bonferroni correction on the per comparison
error rate (α = .0167). A t-test shows that v1 is not significantly different from v4 anymore
(t(21) = 2.45, p = .02, r = .47).16

We conclude that the implementation of zooming (v2) or rotation (v3) apparently does
not significantly affect the time used for organizing documents, whereas variable sized doc-
uments without the notion of pages (v1) does. However, this seems to be mainly based on
the fact that v1 had fewer objects in our experimental setup. Our evaluation of the average
organization time per object shows that v1 is not significantly different to v4 . This draws
the question of whether binding mechanisms would reduce the organization time period for
WildDocs versions supporting fixed size to a similar level than we experienced with v1 . This
hypothesis could be based on the argument that bindings reduce the number of objects at a
certain structure level. Even though it is not statistically significant, there is a tendency that
users of v2 were faster in organizing documents compared to our control group. This raises
the question about what improvements of zooming mechanisms in WildDocs v2 would create
a significant difference.

Area

In this section, we discuss our results for the occupied area after the organization task. The
area in pixels17 squared is the dependent variable, the WildDocs version the independent
variable. We consider v1 (Mdn = 633.3 k, M = 599.3 k, SE = 29.08 k), v2 (Mdn = 22.49 M,
M = 19.21 M, SE = 2.216 M), v3 (Mdn = 24.49 M, M = 24.96 M, SE = 724.80 k), and the
control group v4 (Mdn = 18.58 M, M = 15.78 M, SE = 2.433 M). Shapiro-Wilk tests on the
occupied area after organizing shows normal distributions for v1 (p = .58), v3 (p = .56),
and v4 (p = .29), but not for v2 (p = .004). This is confirmed by Q-Q plots and histograms.

14The labels small (r = .10), medium (r = .30), and large (r = .50) for effect sizes are suggested by Cohen (1992,
156).

15The significant effect between v4 and v1 holds also for non-transformed data samples (t(14.90) = 4.71, p < .001,
r = .77). We applied Welch’s t-test because the F-test showed that the assumption of homogeneity of variance
among both groups is violated (p = .048).

16This is more obvious for non-transformed samples (t(21) = 2.14, p = .04, r = .42). We used the standard t-test
for testing without transformation, because an F-test lets us assume homogeneity of variance (p = .95).

17Pixels refer to a scale level at 100 %.

194

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 195 — #197 i
i

i
i

i
i

5.3. Statistical Results

v1 v2 v3 v4

0
5

10
15

20
25

WildDocs Version

A
re

a
in

 M
eg

a
P

ix
el

s
S

qu
ar

ed

Occupied Area After
Organization Phase

v1 v2 v3 v4
0.

45
0.

50
0.

55
0.

60
0.

65
0.

70

WildDocs Version

A
re

a
in

 M
eg

a
P

ix
el

s
S

qu
ar

ed

Occupied Area After
Organization Phase
(y interval scaled)

v1 v2 v3 v4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

WildDocs Version

A
ve

ra
ge

 A
re

a
in

 M
eg

a
P

ix
el

s
S

qu
ar

ed
 p

er
 O

bj
ec

t

Occupied Area After
Organization Phase

Figure 5.11.: Occupied area after organization phase

We apply an x3 transformation on all groups and receive normal distributions.18 We use the
transformed data for the following tests.

Levene’s test assumes a violation of homogeneous variances (F(3,40) = 4.89, p = .005).
Nevertheless, we report F-tests, following the suggestion in Field & Hole (2003). The vi-
olation is caused by v1 ; Levene’s test on v2 , v3 , and v4 signifies homogeneous variances
(F(2,30) = .36, p = .70). The results show a significant effect as well as a large effect size
among all WildDocs versions (F(3,40) = 19.44, p < .001, r = .77).

To find individual differences between v1 , v2 , or v3 and our control version v4 , we apply
a Bonferroni correction (α = .05

3 = .0167). As the left boxplots of Fig. 5.11 depict,19 there is
a large difference between v1 and the other versions. An F-test supports the assumption that
v1 and v4 do not have homogeneous variances (p < .001). Therefore, we use Welch’s t-test.
As expected, the result shows that the area used for v1 is significantly smaller than for v4 and
the effect size is large (t(10) = 3.62, p = .005, r = .75).20

As argued above, Levene’s test assumes homogeneous variances among v2 , v3 , and v4 .
This is confirmed by F-tests. We base the following t-tests on this assumption. It turns out that
participants of group v2 and v4 used a similar amount of space – the t-test result shows no
significance (t(21) = −1.27, p = .22, r = .27). However, members of v3 used significantly
more space for placing documents compared to v4 (t(19) =−4.09, p < .001, r = .68).21 The
effect size is large.

18We examined Q-Q plots, histograms, as well as Shapiro-Wilk tests for v1 (p = .62), v2 (p = .12), v3 (p = .43),
and v4 (p = .17).

19Figure 5.11 depicts samples before the transformation was applied.
20Also the result of Welch’s t-test of v1 and v4 before transformation is significantly different and shows a large

effect size (t(10.0) = 6.24, p < .001, r = .89). We used Welch’s t-test under the assumption of non-homogeneous
variances, based on an F-test result (p < .001).

21The significance of v3 compared to v4 can also be shown for non-transformed samples (t(11.75) = −3.62, p =
.004, r = .73). We used Welch’s t-test, because of the assumption of non-homogeneous variances (p < .001).

195

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 196 — #198 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Figure 5.12.: Screenshots of v1 (left) and v3 (right), each at 100 % zoom level

As the right boxplot in Fig. 5.11 suggests,22 there remains a significant effect between v1
and v4 when testing the average area per object (t(10) = 3.62, p = .005, r = .75).23

We conclude that group members of v2 and v4 used not significantly more space for orga-
nizing objects. Further, we can see that members of group v3 used a larger area, those of v1
a smaller area, both significant compared to observations of v4 . The large effect between v1
and v4 (and as Fig. 5.11 shows also to the remaining two versions) was based on the default
object size, as depicted in Fig. 5.12. It shows two screenshots, one of v1 and one of v3 . Both
have a zoom level of 100 %. Whereas v1 shows small objects, v3 has fixed size pages that
do not fit on the screen in portrait format at the default zoom level. The result also shows that
the participants working with WildDocs v1 did not enlarge nodes and occupy a larger area,
similar to what members of other groups were forced to do by having fixed size documents.

The difference of v4 to v3 apparently was based on the incidental rotation behavior of the
latter version, also depicted in Fig. 5.12. It seems that participants of this group cared less
about occupied space and did not adjust documents manually in order to have a tidy looking
spatial structure. It can be assumed that more widely spread and sloppily arranged objects
give a better overview, because they show more of its content than those that are arranged as
straight piles on small areas. To some extent, WildDocs v3 forces the user to create sloppy
spatial structures and therefore occupy more space due to its automatic incidental rotation
behavior.

5.3.3. Finding Documents in WildDocs

Time for Correct Answers

This section evaluates exclusively correctly given answers of the finding part. As discussed in
Sect. 5.2.3, we divide questions into two categories, regarding how easy it is to see the asked
visual attribute. Figure 5.13 depicts boxplots24 for both categories with respect to the time
spent for finding documents.

22The boxplot shows samples before transformation.
23We used Welch’s t-test due to the assumption of non-homogeneous variances (p < .001).
24The boxplots depict data before transformation.

196

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 197 — #199 i
i

i
i

i
i

5.3. Statistical Results

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●●

●

●●
●

●●●

●

●

●

●

v1 v2 v3 v4

0
10

0
20

0
30

0
40

0
50

0

WildDocs Version

S
ec

on
ds

Correctly Found Docs with
''Obvious'' Visual Attributes

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

v1 v2 v3 v4
0

10
20

30
40

50
60

WildDocs Version

S
ec

on
ds

Correctly Found Docs with
''Obvious'' Visual Attributes

(y interval = [0,60])

●

●
●

●

●

●

●

v1 v2 v3 v4

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

WildDocs Version

S
ec

on
ds

Correctly Found Docs with
''Hidden'' Visual Attributes

Figure 5.13.: Time spent for correctly finding documents

The independent variable for the following is the WildDocs version; the dependent variable
the time for finding the correct document.

Documents with “Obvious” Visual Attributes The descriptive statistics are: v1 (Mdn =
9.0, M = 15.8, SE = 1.67), v2 (Mdn = 10.0, M = 20.1, SE = 3.10), v3 (Mdn = 14.0,
M = 25.1, SE = 2.53), and v4 (Mdn = 13.0, M = 24.2, SE = 2.53). Q-Q plots as well
as Shapiro-Wilk tests show that none of the given time-based data for correctly finding doc-
uments with “obvious” visual attributes is normally distributed (p < .001 for all groups). A
log transformation solved the problem partly. Shapiro-Wilk tests assume normal distribution
for v1 (p = .08), but still reject v2 (p < .001), v3 (p = .01) and v4 (p = .01). However, our
examination of Q-Q plots and histograms of transformed data let us assume that it is reason-
able to use log transformed values with ANOVA or t-tests instead of using non-parametric
procedures. The following tests are based on transformed data.

Levene’s test assumes homogeneity of variance (F(3,721) = .81, p = .49). The analysis
of variance indicates significant differences between two or more groups (F(3,721) = 12.62,
p < .001, r = .22). In order to see the differences, we used standard t-tests to compare our
control group v4 to the remaining groups, assuming homogeneous variances. We apply a
Bonferroni correction for performing three tests (α = .05

3 = .0167).
Our results show that members of group v1 (t(347) = 4.71, p < .001, r = .24) and group

v2 (t(353) = 3.03, p = .003, r = .16) were significantly faster in finding documents with
“obvious” visual attributes compared to members of group v4 , whereas members of group v3
(t(327) = −.28, p = .78, r = .02) were not. This tendency can also be seen on the boxplots
in the middle of Fig. 5.13 that depict the lower part up to 60 seconds. The effect size for v1
is small, for v2 between small and medium.

We have shown that variable document size (v1) and zooming features (v2) support finding
of documents with easily recognizable visual attributes compared to our control group (v4).
The effect size for zooming is slightly larger than the one for fixed size documents. We

197

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 198 — #200 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

also pointed out that there is no effect of incidental rotation or sloppiness (v3) regarding
the finding time. This falsifies two of our hypotheses for the used document and question
sets: Despite our assumption, neither incidental rotation (v3) nor fixed size documents (v4 ,
compared to variable size support in v1) seem to help the user in finding information. We
were not able to falsify our claim that WildDocs with zooming enabled (v2) supports a user
in finding information more efficiently than without (v4).

Documents with “Hidden” Visual Attributes Now, we consider v1 (Mdn = 141.0, M =
211.0, SE = 33.30), v2 (Mdn = 31.5, M = 57.8, SE = 12.46), v3 (Mdn = 54.0, M = 89.7,
SE = 19.26), and v4 (Mdn = 56.0, M = 72.8, SE = 10.59) with respect to the finding time
of documents with “hidden” visual attributes. Similar to the observation for documents with
“obvious” visual attributes, the gathered time data is not normally distributed.25 A 4

√
x trans-

formation causes a positive result of the data’s distributions. Shapiro-Wilk still rejects v1
(p = .048), but assumes for all other groups normal distributions.26 Based on our examina-
tion of Q-Q plots and histograms of the transformed sets, we have good reason to assume that
the distribution of the different data sets, including v1 , is close enough to normal that we can
accept parametric statistics. In the following, we use 4

√
x transformed data sets.

Levene’s test rejects the assumption of homogeneity of variance (F(3,110) = 6.14, p <
.001), nevertheless, we report F-tests, as suggested by Field & Hole (2003). ANOVA reports
a significant effect among the tested groups with a medium effect size (F(3,110) = 6.06,
p < .001, r = .38). We apply a Bonferroni correction for three comparisons (α = .05

3 = .0167)
and use t-tests to point out differences.

Based on the assumption of non-homogeneous variance,27 we use Welch’s t-test for cal-
culating the effect between v1 and our control group v4 . As the right boxplots in Fig. 5.13
suggest,28 members of group v1 were significantly slower in finding documents with “hid-
den” visual attributes correctly than those of group v4 (t(49.19) =−2.63, p = .01, r = .35).
The effect size is medium. F-tests for the remaining comparisons assume homogeneity
of variance.29 Standard t-tests did not discover significant differences between v4 and v2
(t(51) = 1.75, p = .09, r = .24) or v4 and v3 (t(50) = .009, p = .99, r = .001).

We conclude that finding documents on the basis of “hidden” visual attributes correctly
takes significantly longer for variable size (v1) versions. Although our tests do not report
significant effects for v2 or v3 compared to v4 , there is a tendency that zooming (v2) supports
the user, whereas rotation (v3) does not show any effect for finding “hidden” attributes. We
are able to falsify two of our hypotheses: Neither zooming nor rotation significantly decrease
the time for finding documents on the basis of “hidden” visual attributes. However, WildDocs
with fixed size document support (v4) is significantly faster than without (v1 , variable size
objects).

25Shapiro-Wilk support our evaluation of Q-Q plots and histograms: v1 (p = .003), v2 (p < .001), v3 (p < .001),
and v4 (p = .01).

26The results were v2 (p = .21), v3 (p = .50), and v4 (p = .93).
27The F-test assumes that the homogeneity of variance of v1 and v4 is violated (p < .001).
28The boxplots depict data before transformation.
29This is for the comparison of v4 with v2 (p = .17) and v4 with v3 (p = .06).

198

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 199 — #201 i
i

i
i

i
i

5.3. Statistical Results

Incorrect Answers

We use the WildDocs version as the independent variable and the rate of not correctly given
answers as the dependent variable.

All questions for which the participant did not find the correct document were classified
either as “wrong” (this is when a wrong document was chosen) or as “gave up” (this is when
the participant did not find the right document and gave up). We experienced several cases
where participants chose a document that they thought would be the closest to the asked one,
even though they were aware of the fact that it was not the correct one. Therefore, we decided
afterward to combine both groups for the following evaluation.

After the test we classified all incorrect answers according to the reason why a participant
did not find the right document into “condition-based problem” or “structure-based problem”.
The goal is to isolate problems that were based on the spatial structure, not on other condi-
tions. The following sections will discuss them separately.

Condition-Based Problems Failures due to condition problems were caused by lack of
prior knowledge that would have been needed to find a specific document or some physical
limitations of the participant. For example, one question asked about a document with a “pic-
togram” on it, but some participants did not know the meaning of this term. Other examples
are participants who were not able to recall how a certain foreign language looks (e. g., He-
brew or Arabic). A case of physical limitation was color blindness, for example, a participant
chose the document with brown font, thinking that this would be red. We were able to point
out conditional problems, because users were asked to think aloud whenever they encounter
a problem.30 We also classify incorrectly understood questions as conditional problems. For
example, the question “Find the document that is written in Arabic and is longer than 3 lines.”
was read by some participants as “. . . and is no longer than 3 lines.”

We consider group v1 (Mdn = 0, M = .017, SE = .008), v2 (Mdn = 0, M = .036, SE =
.014), v3 (Mdn = .083, M = .058, SE = .014), and v4 (Mdn = .042, M = .056, SE =
.021). Q-Q plots, histograms, and Shapiro-Wilk tests31 report that none of them are nor-
mally distributed. Transforming the data does not solve this problem. Therefore, we use
non-parametric statistics.

A Kruskal-Wallis rank sum test shows that there is no statistical significance between Wild-
Docs versions regarding condition-based failures (H(3) = 5.11, p = .16). This is what we ex-
pected, because of the random assignment of participants to WildDocs versions. The descrip-
tive statistical data of all condition-based failure rates show rather low values (Mdn = .042,
M = .041, SE = .008).

Structure-Based Problems Descriptive statistics for the rate of structure-based failures
show mostly higher values than condition-based problems: v1 (Mdn = .14, M = .16, SE =
.03), v2 (Mdn = .12, M = .14, SE = .03), v3 (Mdn = .08, M = .08, SE = .02), and v4
(Mdn = .13, M = .23, SE = .08). Figure 5.14 depicts boxplots of those four groups. Shapiro-
Wilk tests assume normal distributions for all samples, except for v4 (p = .01). We apply

√
x

transformations on all samples before performing statistical tests, because it shows positive

30Participants were asked during the introduction phase to think aloud when problems occur (see Sect. 5.2.5).
31The results were: v1 (p < .001), v2 (p = .002), v3 (p = .03), and v4 (p = .006).

199

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 200 — #202 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

●

v1 v2 v3 v4
0.

0
0.

2
0.

4
0.

6
0.

8

WildDocs Version

F
ai

lu
re

 R
at

e

Failure Rate based on
Structure Problems

Figure 5.14.: Failure rates due to structure problems

effects on the distributions of most data sets.32 This is confirmed by Q-Q plots and histograms.
Levene’s test assumes homogeneity of variance (F(3,41) = .96, p = .42). The analysis of

variance does not report a significant difference of structure-based failure rates among Wild-
Docs versions (F(3,41) = 1.26, p = .30, r = .29).33

We were able to falsify our hypothesis. Apparently, there is no significant effect in structure-
based failure rates among the versions for variable sizes (v1), enhanced zooming (v2), inci-
dental rotation (v3), or fixed sizes (v4). However, the tendency of fewer failure rates for
v3 (t(19) = 1.68, p = .11, r = .36)34 leaves the question open, if or how emerging spatial
structures can be improved that the effect becomes statistically significant.

Figure 5.15 depicts a bar chart of the rate of failed questions due to structure problems.
In combination with Tab. 5.3, we can see that the first six positions (q17, q06, q08, q47,
q53, q15) as well as position nine (q31) are taken by questions that are related to “hidden”
visual attributes. That means that all seven questions of this type appear within the first nine
positions of structure-based failures.

5.3.4. Use of WildDocs Specific Features

This section describes how participants used specific WildDocs features. This gives some
information about how comfortable they felt with them.

32The
√

x transformation causes Shapiro-Wilk results to changed from v1 (p = .56), v2 (p = .11), v3 (p = .56), and
v4 (p = .01) to v1 (p = .73), v2 (p = .48), v3 (p = .19), and v4 (p = .78).

33Without transformation, the effect is still not significantly differently (F(3,41) = 1.59, p = .21, r = .32). Also
here, we assumed the homogeneity of variance (F(3,41) = 2.01, p = .13).

34Based on an F-test we assumed homogeneous variances (p = .11) and used a standard t-test.

200

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 201 — #203 i
i

i
i

i
i

5.3. Statistical Results

q17 q06 q08 q47 q53 q15 q22 q05 q31 q12 q13 q41 q09 q14 q26 q56 q04 q23 q30 q57 q54 q11 q39 q19

wrong
gave up

Question ID

F
ai

lu
re

 R
at

e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Rate of Failed Questions due to Structure Problems

Figure 5.15.: Rate of failed questions due to structure problems

Activation of Zooming

Zooming of v2 and the other versions can hardly be compared directly, because participants
of v2 had alternative zoom features. Therefore, we divide this section into two parts, one for
zooming in v1 , v3 , and v4 and another section for zooming in v2 .

Zooming in WildDocs v1, v3, and v4 Figure 5.16 depicts zoom menu activation counts for
v1 , v3 , and v4 , for both, organizing and finding phase. We counted zoom in, zoom out, and
zoom reset individually in our log file during testing; however, we decided to evaluate them
together. Any single click on those three commands at the zoom menu was counted as one
zoom menu activation.

Descriptive statistics for the organization part show the following values: v1 (Mdn = 0,
M = .25, SE = .18), v3 (Mdn = 35.0, M = 41.6, SE = 10.54), and v4 (Mdn = 9.0, M = 16.2,
SE = 4.82). We discovered normal distributions for the menu zoom count for v3 (p = .69)
and v4 (p = .06), confirmed by Q-Q plots and histograms. v1 is not normally distributed
(p < .001), mainly because only two participants used the zoom menu while organizing:
Participant s22 used it once, s25 twice. Because the significance to version v4 is obvious,35

we test only v4 against v3 .
The F-test assumes non-homogeneous variances. Welch’s t-test reports that members of

group v3 used menu zoom significantly more often than users of v4 (t(12.66) = −2.19,
p = .048, r = .52). The effect size is large.

The boxplots for menu zoom activation rates36 for the finding part look similar for v3
(Mdn = 2.23, M = 2.15, SE = .50) or v4 (Mdn = 1.0, M = 1.56, SE = .54); however, v1

35Eight of eleven members of group v4 used menu zoom. The lowest menu zoom activation count among them is
seven.

36The rates are calculated by the total number of zoom menu activations divided by all asked questions. Those
include also questions that we have taken out later (see Sect. 5.3.1). The reason is that we did not have the
possibility to isolate those menu zoom activations that were counted during a finding task that was taken out
later.

201

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 202 — #204 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

●●

v1 v2 v3 v4

0
20

40
60

80
10

0

WildDocs Version

Z
oo

m
 A

ct
iv

at
io

ns

Menu Zoom Activations
Organization Phase

●

●

v1 v2 v3 v4

0
1

2
3

4
5

WildDocs Version

A
ve

ra
ge

 Z
oo

m
 A

ct
iv

at
io

ns
 p

er
 Q

ue
st

io
n

Menu Zoom Activations
Finding Phase

Figure 5.16.: Menu zoom activations during organization (left) and finding phase (right) in
v1 , v3 , and v4

(Mdn = .21, M = .45, SE = .20) indicates higher values relative to the other groups than it
has for the organization phase. Confirmed by Shapiro-Wilk tests, Q-Q plots and histograms
show that v1 (p = .001) and v4 (p = .02) do not have normally distributed data, whereas v3
has (p = .47). A

√
x transformation produces acceptable distributions for v1 (p = .11), v3

(p = .36), and v4 (p = .36). We use the transformed data for the following tests.37

Levene’s test assumes homogeneity of variance (F(2,29) = .55, p = .58). Analysis of
variance reports a significant difference and a large with tendency to medium effect size
(F(2,29) = 4.09, p = .03, r = .47). We apply a Bonferroni correction (α = .05

2 = .025)
and use t-tests to compare the use of menu zoom during finding to our control group v4 . For
testing v1 against v4 , we used Welch’s t-test, because the F-test reports a possible violation
of the homogeneity of variance (p < .001). The result shows that apparently users of v1 ac-
tivate menu zoom significantly less than users of v4 (t(10.68) = 3.99, p = .002, r = .77).
The effect size is large. Variances of v3 and v4 are homogeneous (p = .46). The standard
t-test shows that they are not significantly different from each other (t(19) =−1.98, p = .06,
r = .41), even though similar to the organization part, members of group v3 tend to use the
zoom menu more often than those of v4 . The effect size is medium with a tendency to large.

We conclude that menu zoom is used significantly less for variable size versions (v1) com-
pared to fixed size (v4). This result applies for both organizing and finding. We expected
this, because small nodes in v1 do not force the user to zoom as much as with v4 in order to
to get a better overview or navigate conveniently. We further conclude that users of versions
supporting incidental rotation (v3) used menu zoom significantly more often during the or-
ganization phase than the control group (v4). For the finding part, there is a tendency that v3
shows a higher number of menu zoom calls than v4 . It seems that sloppy structures, as pro-
duced with v3 , increase the user’s desire to use zooming. Also the question about a possible

37Boxplots in Fig. 5.16 depict data before being transformed.

202

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 203 — #205 i
i

i
i

i
i

5.3. Statistical Results

●

Menu Quick

Smooth

● s03
s26
s32
other

Zoom Usage for
Organizing in v2

●

Menu Quick

Smooth

● s03
s26
s32
other

Zoom Usage for
Finding in v2

Figure 5.17.: Zoom function usage during organization (left) and finding phase (right) in v2

relation between the frequency of menu zoom usage and the occupied area comes in mind.
We will discuss this in Sect. 5.3.5.

Zooming in WildDocs v2 WildDocs v2 has several zoom methods built in. It is possible
to zoom via menu or keyboard shortcuts for stepwise zooming, keyboard shortcut for “quick-
zoom”, or right mouse button for “smooth zooming”. We want to see how participants used
those. We do not calculate significance, but describe tendencies, because the different zoom
methods are of different type. For example, it takes one activation to zoom out completely for
quickzoom, whereas it may take several when using the zoom menu. If we consider one sin-
gle zoom act as moving from a “departure” to a desired “destination” scale level, the several
counts of menu zoom activations compared to the single quickzoom call would be misleading.
This view on zooming would cause distortions on the axes of the ternary plots in Fig. 5.17,
which we will discuss in the following.

Figure 5.17 depicts the relation of menu zoom, smooth zooming, and quickzoom with
regards to the number of activation. Each symbol represents a participant of group v2 . At
the organization part, four users strongly used quickzoom, three of them menu zoom not at
all. A wider spread field of six participants activated mostly smooth zooming; however, most
of them did not stick with it as strongly as the previous group did with quickzoom. Two
participants tended to activate mostly zoom menu functions.

The situation changed for the finding part: All four participants who used mainly quick-
zoom for organizing stayed with it. All other participants, except three, also moved toward
quickzoom. Those three activated mainly other techniques for zooming. They are marked
with special symbols in Fig. 5.17. Participant s03 used menu zoom already to a high extend
during organizing; however, for the finding part he/she decided to use it almost exclusively.
Participant s26 used mainly smooth zooming, but also quickzoom and to some extend menu
zoom for finding. During the organization, he/she did not use menu zoom at all and moved
slightly toward a higher rate of smooth zooming calls. Participant s32 ’s activation count for
organizing was almost equal for smooth zooming and menu zoom. He/she used quickzoom
very little. For the finding part, he/she changed the strategy toward activating among all zoom
methods mostly menu zoom, quickzoom more often, and smooth zooming only to a small
extent. Five of the participants did not call zoom menu methods at all during finding.

We can conclude that six participants changed their main zoom method between organiza-

203

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 204 — #206 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

tion and finding part. Five decided to change to mainly quickzoom, one moved away from
smooth zooming toward menu zoom and quickzoom. All participants who used mainly quick-
zoom during the organization phase did not change their strategy for finding. The group of
participants who mainly activated quickzoom grew from four at the organization part to nine
at the finding part. According to the activation counts for finding, quickzoom became the
most popular zoom method in WildDocs v2 .

We further can see that four participants during organizing and five during finding did not
use menu zoom at all. This includes menu zoom keyboard shortcuts (CTRL-0, CTRL--,
CTRL-=). Menu zoom is the only zoom method that has zero counts for some sessions.
Figure 5.17 also depicts that participants activated menu zoom slightly less often relative to
the other methods for finding than they did during the organization part. There is also a strong
tendency of users away from smooth zooming toward quickzoom.

Participants were aware of all zooming methods; however, only some were using quick-
zoom extensively from the very beginning, but more switched to it later during the experi-
ment. This indicates that the participants were not used to methods such as quickzoom, even
though it became popular during the test. This leads to the question about the efficiency
of different zooming methods: Would quickzoom improve existing spatial-based knowledge
management applications? This question becomes especially interesting, because quickzoom
is not widespread in other applications. We are not aware of any application that has imple-
mented a zoom method similar to quickzoom, that is based on the observation we made by
analyzing paper work on a real desk.

Purposeful Rotation in WildDocs v3

WildDocs v3 has incidental as well as purposeful rotation implemented, as explained in
Sect. 4.3.1. We counted how often a participant activated the purposeful rotation feature.
For the organization part, six of ten used this feature (Mdn = 2.5, M = 3.0, SE = 1.01). The
maximum is eight counts. During the finding part, three users called rotation on an object,
two of them three times, one of them one time. None of the count collections are normally
distributed. This is mainly caused by only little use and a small sample size (N = 10).

We do not have the possibility to distinguish between intentional and unintentional activa-
tions; however, we assume that at least some of the counted rotation calls happened through
accidentally double clicking a document. This assumption is based on our observations dur-
ing the test phase when we did not experience many rotations that were performed by the
participant. We conclude that the purposeful rotation feature was only little used by the par-
ticipants.

Object Resizing in WildDocs v1

We counted how often participants of group v1 clicked on bounds handles. Bounds handles
are used to resize objects. The descriptive data shows that most participants did not use han-
dles extensively during organization (Mdn = 25.0, M = 34.6, SE = 10.58). This changed
during the finding phase (Mdn = 9.17, M = 9.17, SE = 1.72). The measurement for the data
collected during the finding phase is based on the average handle count per question.38 Q-Q

38There were 24 questions in total per participant. The total count of handle clicks for finding was between 40 and
493 (Mdn = 220.0, M = 220.2, SE = 41.37). Our evaluation includes data on questions that were taken out after
the test (see Sect. 5.3.1 for further details). Affected are participant s04 and s05, each of them with five questions.

204

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 205 — #207 i
i

i
i

i
i

5.3. Statistical Results

v1 v2 v3 v4

0
20

40
60

80
10

0

WildDocs Version

B
ou

nd
s

H
an

dl
e

A
ct

iv
at

io
ns

Bounds Handle Activations
Organization Phase

v1 v2 v3 v4

5
10

15
20

WildDocs Version

A
ve

ra
ge

 B
ou

nd
s

H
an

dl
e

A
ct

iv
at

io
ns

 p
er

 Q
ue

st
io

n

Bounds Handle Activations
Finding Phase

Figure 5.18.: Bounds handle usage during organization (left) and finding phase (right) in v1

plots as well as Shapiro-Wilk tests indicate normal distributions for counts during organiza-
tion (p = .08) as well as during finding phase (p = .78).

The high number of handle counts for finding documents is mainly caused by questions
that ask about a visual attribute that was outside the visual area of an object. The user had
to enlarge the object in order to see the content further down. Interestingly, most participants
aimed to put the object back to its original position and in its original size, even though he/she
may have had to enlarge the same objects several times for solving other questions.

We conclude that participants rather use bounds handles several times on each object in-
stead of enlarging documents once and placing them on a larger area. One reason may be that
they were not used to work with full sized documents, similar to fixed size ones, on this type
of application.

5.3.5. Relations

In this section we discuss relations between different pieces of data gathered in our experi-
ment. We counted feature activations during organization as well as during finding phases.
We convert all feature counts for finding to the average counts per asked question. Because
the counters include also feature activations for working on questions that were taken out
later, we consider all questions, excluding skipped ones, for calculating the average count per
asked question. A detailed discussion of skipped and taken out questions can be found in
Sect. 5.3.1.

Relations of Special Features to Time

We investigate in finding relations between the time spent for organizing or finding objects and
the following version specific features: Bounds handle usage for v1 , quickzoom or smooth

The reason is that we calculate the average handle activation count per questions. This includes the one that were
taken out later. We do not have the possibility to subtract the handle count performed for those five questions.

205

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 206 — #208 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

●
●

●
●

●

●

●

●

●

●

●

0 20 40 60 80 100

20
0

40
0

60
0

80
0

10
00

Bounds Handle Usage

S
ec

on
ds

Organization Time and
Bounds Handle Usage for v1

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

20
40

60
80

10
0

Average Bounds Handle Usage per Question

A
ve

ra
ge

 S
ec

on
ds

 p
er

 Q
ue

st
io

n

Finding Time and
Bounds Handle Usage for v1

Figure 5.19.: Relation of bounds handle usage to organizing (left) and finding time (right) in
v1

zooming usage for v2 , or zoom menu usage for v1 , v3 , and v4 . Scatter plots as well as
evaluations of F-statistics and R2 let us assume that there is no linear relationship among
them,39 except for bounds handle usage to time.

Figure 5.19 suggests a linear relation between bounds handle activations and time spent for
organizing (F(1 and 9) = 38.84, p < .001, R2 = .81) as well as for bounds handle usage and
the average time spent for working on a question (F(1 and 9) = 47.77, p < .001, R2 = .84). A
simple linear regression y = α +βx with α = 140.08, β = 7.51 for organizing and α = 13.48,
β = 4.10 for the average finding time per question describes the relations. This means that one
bounds handle activation costs approximately 7.5 seconds for organizing or approximately
4.1 seconds while working on one question. This is not to be seen in isolation. There are
other related effects, such as time for reading the content of the resized object, etc. However,
it points out that resizing is expensive in time.

A related question is whether the failure rate of questions for the finding part is related to
the number of bounds handle activations. An useful result would only contain structure-based
failures. However, our data is based on the total count of bounds handle clicks. There is no
possibility to distinguish clicks that were performed for searches failed by structure and those
failed by condition problems. Therefore, we did not investigate in this question.

Relations to Occupied Area

We assumed that there would be a relation of occupied area measured after the organization
phase to organization time (F(1 and 42) = 15.04, p < .001, R2 = .26), spent time for correctly
finding documents (F(1 and 42) = 7.52, p = .009, R2 = .15), or the rate of structure-based

39The results for F-statistics and R2 are the following for the organization time related features: quickzoom for
v2 (F(1 and 10) = .10, p = .75, R2 = .01); smooth zooming for v2 (F(1 and 10) = .03, p = .87, R2 = .003);
menu zoom for v1 (F(1 and 10) = .48, p = .51, R2 = .05), v3 (F(1 and 8) = .40, p = .54, R2 = .05), and v4
(F(1 and 9) = .62, p = .45, R2 = .06). The results for F-statistics and R2 of the average time of working on a
document in relation to the following features are: quickzoom for v2 (F(1 and 10) = .01, p = .92, R2 = .001);
smooth zooming for v2 (F(1 and 10) = .23, p = .64, R2 = .02); menu zoom for v1 (F(1 and 9) = 8.30, p = .02,
R2 = .48), v3 (F(1 and 8) = 9.81, p = .01, R2 = .55), and v4 (F(1 and 9) = .15, p = .71, R2 = .02).

206

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 207 — #209 i
i

i
i

i
i

5.3. Statistical Results

●●●●●●●●●●●

0 5 10 15 20 25

0
20

40
60

80
10

0

Area in Mega Pixels Squared

M
en

u
Z

oo
m

 A
ct

iv
at

io
ns

● v1
v3
v4

Menu Zoom Activations During Organization
and Occupied Area

●
●

●

●

●●●

●

●
●

0 5 10 15 20 25

0
1

2
3

4
5

Mean Area in Mega Pixels Squared

A
ve

ra
ge

 M
en

u
Z

oo
m

 A
ct

iv
at

io
ns

 p
er

 Q
ue

st
io

n

● v1
v3
v4

Menu Zoom Activations During Finding
and Mean of Occupied Area

Figure 5.20.: Relation of occupied area to zoom menu activations during organization (left)
and finding phase (right) for v1 , v3 , and v4

failures (F(1 and 42) = 9.33, p = .004, R2 = .18). However, scatter plots as well as evaluation
of linear models do not show a positive result.

Now, we look into the relation of occupied area after the organization phase and the number
of menu zoom activations. Figure 5.20 shows scatter plots for the organization and finding
phase. For the evaluation of the finding phase, we use the mean of the occupied area at the
beginning40 and at the end of the finding part. The underlying data comes from v1 , v3 , and
v4 and is calculated as average zoom menu count per asked question.41 We do not use v2 , as
discussed in Sect. 5.3.4.

We apply a linear model for the used area and zoom menu activations captured during
the organization phase. The result reports significance; however, R2 is weak (F(1 and 30) =
16.41, p < .001, R2 = .35). There is a similar result for the area and its relation to the number
of zoom menu calls during the finding phase (F(1 and 29) = 8.55, p = .007, R2 = .23). The
simple linear regression model y = α +βx fits for the organization part with α =−.14, β =
1.40 and for the finding phase with α = 0.41, β = 0.07.

We conclude that even though there is no tight linear relationship between menu zoom
activations, there is an overall tendency that there is a higher frequency of menu zoom calls
for larger areas. This explains why menu zoom calls as well as the occupied area after the
organization part for v3 are significantly or at least tendentiously different to those for v4 .42

Apparently, zooming becomes more important to most users when dealing with larger areas.
Our tests discussed in Sect. 5.3.2 have shown that fixed size documents need significantly
more space than variable sized objects. Therefore, zooming becomes especially important for
fixed size versions.

40That is the occupied area at the end of the organization phase.
41Asked questions include those that were taken out later.
42See discussion in Sect. 5.3.2 for further details about the occupied area or Sect. 5.3.4 for further information about

the menu zoom usage.

207

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 208 — #210 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

Test v1 v2 v3 Focus

Time for organizing H O 2 time used
Time for organizing per object O O 2 time used
Occupied area after organization H 2 N occupied area
Average occupied area after organization per object H 2 N occupied area
Correctly found docs with “obvious” visual attributes H H 2 time used
Correctly found docs with “hidden” visual attributes N O 2 time used
Incorrect answers, based on condition problems 3 3 3 rate
Incorrect answers, based on structure problems 2 2 O rate
Subjective satisfaction 3 3 3 users’ rating
Use of menu zoom (organization) H – N activation count
Use of menu zoom (finding) H – M activation count

H = significantly less; N = significantly more; O = tendentiously less; M = tendentiously more;
2 = no obvious tendency; 3 = not significant, no or unknown tendency; – = not part of comparison

Table 5.4.: Summary of statistical tests compared to WildDocs v4

5.3.6. Participants’ Ratings

We asked participants after the test to rate the application on a scale of whole numbers from
one to five. One is the worst rating and five is the best. The independent variable is the
WildDocs version; the dependent variable is the rating given by the participants. Shapiro-
Wilk tests confirmed by histograms show that except for v4 (p = .18), none of the data sets
is normally distributed: v1 (p = .004), v2 (p = .003), and v3 (p < .001). Q-Q plots show
discrete distributions. Transformation does not solve the problem. Therefore, we used non-
parametric statistics for evaluation. A Kruskal-Wallis test reports no significant effects among
the four groups (H(3) = 4.49, p = 0.21). Apparently, most users tended to like the application
(Mdn = 4.0, M = 3.73, SE = .11).

5.4. Summary and Conclusion on Statistical Results

Table 5.4 gives a summary of the previously discussed results. Effects are differently marked
for significantly less (H) and significantly more (N) in comparison to the control group v4 .
Non-significant results are divided into those that show a tendency43 of less (O) or more
(M) in comparison to v4 , those that do not show a tendency (2), and finally those that may
have a tendency (3). The result of the latter group was detected by Kruskal-Wallis tests on
condition-based incorrect answers and subjective ratings. However, we did not apply indi-
vidual comparisons to the control group, because it is of no interest to us for condition-based
incorrect answers and difficult to see tendencies on the discrete distribution of participants’
ratings. As discussed in Sect. 5.3.4, v2 was not tested against v4 for zooming activations.
This is marked in the table as “–”.

The results show that v1 has more in common with v2 than with v3 . The effects of v2
are often in between v1 and v3 . Whereas members of group v1 were significantly faster in

43The reason why we point out tendencies for non-significant results is to mark those hypotheses that are still
interesting for future research investigations.

208

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 209 — #211 i
i

i
i

i
i

5.4. Summary and Conclusion on Statistical Results

organizing objects on the screen, those of group v2 showed a tendency to be faster than v4 .
The evaluation of the occupied area shows that both, v1 and v3 , significantly differ from v4 ,
but in opposite directions. Similar results exist for menu zoom usage, even though for the
finding part, v3 members used menu zoom only tendentiously more often. We calculated
linear models that report that menu zoom tendentiously is more often used when objects
occupy a larger area.

There are different effects for documents with “obvious” versus those with “hidden” visual
attributes. For the “obvious” ones, it took significantly less time for v1 and v2 . For the
“hidden” ones, it took significantly more time for v1 , whereas the results on v2 show at least
a tendency to be still faster than v4 . There is no effect for v3 .

The rates of incorrect answers do not show significant differences; however, the evaluation
of v3 reports a tendency to have a lower structure-based failure rate. There is also no signif-
icance among the participants’ ratings. As mentioned above, we did not explore tendencies
for condition-based failures or ratings.

Based on the statistical results, we have learned that variable size objects (v1) help to
organize information quickly as well as to find them correctly, as long as the asked visual
attribute is “obvious”, that is basically, visible on the screen. It is not a good tool for browsing
documents looking for “hidden” visual attributes. It turned out that the fixed size feature (v4)
supports the knowledge worker better in this context.

Tests on zooming have shown that v2 tends to reduce the time for organization as well as
the time for finding documents based on “hidden” visual attributes. Similar to v1 , v2 is also
significantly faster for finding “obvious” attributes. In general, the tests report better results
for zooming than for variable size features.

Rotation (v3) does not show many significant effects compared to v4 . However, partic-
ipants of this group used a larger area. They also zoomed more often, significantly for the
organization part and tendentiously for finding. In our experiment, rotation has no significant
positive effects for knowledge workers. However, it could be shown to improve the user’s
workflow, if the tendency of a lower rate of structure-based problems can be made significant,
possibly via minor improvements on WildDocs v3 or a higher number of participants.

We tested WildDocs with respect to well defined problem statements. The results do not
tell how WildDocs features would affect current spatial hypertext applications, such as VKB
or Tinderbox, because the novel features would have to be seen in combination with existing
ones, such as search facilities or agents. However, our statistical evaluation shows that some
of the selected, isolated aspects have an effect. This makes it valuable and interesting to test
those in combination against supported features of existing applications.

209

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 210 — #212 i
i

i
i

i
i

Chapter 5. Experimental Design and Evaluation

210

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 211 — #213 i
i

i
i

i
i

Chapter 6.

Summary, Future Work, and Conclusion

“It is quite nice. It is easy to learn
and to use. It is a strong tool to
organize documents.”

(Participant s21 about WildDocs)

6.1. Summary

6.1.1. Statistical Evaluation

We had some assumptions about the outcome of the experiment (see Tab. 3.1 on page 73).
However, the results, shown in Tab. 5.4 on page 208, turned out slightly different. We ex-
pected the time used for organizing or finding to be significantly faster with zooming enabled
(v2). The only case where we found this to be true was for correctly found documents with
“obvious” visual attributes. For all other organizing or finding cases there was no significance,
even though our test reported a tendency of being faster.

We have to differentiate also for variable size support (v1). Our assumption of signifi-
cantly faster organizing turned out to be correct when taking the total amount of objects into
consideration. The time for finding differs among “obvious” and “hidden” visual attributes.
Documents with “hidden” attributes fulfilled our expectation of being significantly slower,
whereas such with “obvious” attributes were found significantly more quickly. We learned
that variably resizable small nodes support finding only for nodes with “obvious” visual at-
tributes.

We did not expect incidental rotation or sloppiness (v3) to affect significantly time spent
for organizing. We expected the time for finding information to be significantly lower than
without sloppiness, but this turned out not to be true. However, we experienced the tendency
of fewer incorrect answers based on structure problems.

Our assumption that v1 would have a significantly smaller occupied area and v2 would
have no significant difference in this regard were met. However, we were surprised that
emerging sloppiness turned out to occupy significantly larger areas. We have learned that
more space is needed when spatial structures emerge sloppily.

We further expected to have no significance in the number of zoom calls for v3 ; however,
users activated zoom methods significantly more often for organizing and tendentiously more
often for finding. Apparently, zooming is more important for users when dealing with sloppy
spatial structures. Our assumption of experiencing significantly less zooming for v1 was met.
This shows that zooming for members of v1 was not as important as for the members of the
control group. We further found out that there is an overall tendency that larger occupied
spaces draw more zoom method calls and vice versa.

211

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 212 — #214 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

We assumed that members of v2 would be significantly higher satisfied with the applica-
tion. However, there was no significance among the different groups.

The usability test delivered results for short term use scenarios. However, we assume to
have more implicit metainformation gathered over time. Therefore, long term tests are likely
to report different results.

6.1.2. Real World Observations

We have analyzed real world paper structures including bindings. The most important aspect
we discovered are emerging effects of spatial structure during or after creation. We argued
that this type of metainformation is attached automatically and without additional effort, for
example, sloppiness of piles, paper with a tinge of yellow through sunlight, etc.

We further argued that there are various limitations that are based on laws of nature. One
example is space. Humans perceive any point in space to be taken only by one item. For ex-
ample, the space that a book takes cannot be taken by another book at the same time. Another
example is the inside of a box, which cannot be larger than the box’s outside dimensions.
Other laws of nature include physical forces, such as gravity, friction, or inertia. Those limi-
tations affect the creation of spatial structures with paper to a high degree. Humans have an
understanding or feeling of how those forces act on items.

Limitations or physical forces lead to complex behavior. We isolated two important as-
pects: Auto conversion and structure dissolution. Auto conversion happens when a structure
is converted to another one when added. For example, a heap that is added to a tray becomes
a stack, because the documents need to have a neat shape in order to fit into the tray. Struc-
ture dissolution happens when a structure disappears and gives its contained documents to
the other structure. For example, open placed objects that are put onto a heap will not be
perceived as pages that belong together, but rather directly as child documents of the heap.
We also pointed out specific behavior of structures’ thickness growth.

We described constraints for adding bindings to other bindings. Only certain combinations
are possible, as shown in Tab. 2.3 on page 46. Partly, this depends on structure conversion,
structure dissolution, or space-related constraints, such as thickness growth.

We explained the idea of structure that is pushed to its next structure level. An example
is depicted in Fig. 2.11 on page 47. Mainly, this becomes necessary because of physical
limitations. People came up with a variety of devices or add-ons that can be used to group or
bind documents, such as binders, or marks or inscriptions on binders.

We further developed a classification for bindings. Table 2.1 on page 40 shows an overview.
We used this taxonomy to describe various structure or binding types that we discovered in
offices. Furthermore, we developed the concept of binding mechanism and created a classifi-
cation for the described bindings. Those classifications are necessary for building application
classes efficiently.

We argue that the described paper structures or binding types are only a small snapshot of a
large variety. Different types are used in different cultures, times, or locations. For example,
we mentioned scripture roles as a binding type that is not used frequently in the western world
today.

212

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 213 — #215 i
i

i
i

i
i

6.1. Summary

Box

Figure 6.1.: OmniGraffle object (left) and style summary inspector window with the object’s
visual attributes listed (right)

6.1.3. Application Analysis

The summary in the previous section points out the variety and complexity of real paper
structures or bindings, as well as the ability of office workers to deal with that through expe-
rience. In this thesis, we compared some aspects to spatial structure supporting applications,
especially to spatial hypertext applications.

We argued that those applications are based on metaphors, for example, cards on a table,
but their implementations are at high abstraction of levels. Most real world behavior is either
mostly or completely unimplemented, such as natural-like emerging behavior or sloppiness,
physical forces, or realistic bindings. The latter includes limitations, such as fixed node, desk,
or collection size.

Another discussed issue is zooming. People in the real world change their focus constantly,
for example, browsing a book shelf, picking a book, and finally browsing its pages. We argue
that smooth zooming would simulate this most realistically among other focus–context sup-
porting interactions. However, today’s 2D spatial hypertext applications mostly support only
stepwise zooming. OmniGraffle, a chart application which was “misused” for the purpose
of our research as a “spatial hypertext application” had the most advanced zooming support
among the analyzed applications. Our implementation of smooth zooming or quickzoom in
WildDocs has shown positive effects in our usability test.

Essential for spatial hypertext applications beside spatial arrangement are visual cues.
Those include color, shape, or border (color, width, or stroke). However, VKB and Tinderbox
support only basic types. For instance, the only supported shape for nodes is rectangular.
Only some border settings are available in VKB; none are available in Tinderbox.

On the other side, OmniGraffle supports a variety of visual cues for objects and therefore
offers better graphical and visual support. Figure 6.1 depicts an example. Visual objects with
on or more of those visual cues that are used as data variables are called glyphs (see Ware,
2004, 176–185).

213

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 214 — #216 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

6.2. Future Work

6.2.1. Open Questions

We discovered many questions that remain open for future work. One main topic concerns
bindings and how they would affect users in organizing or finding information. Would bind-
ings reduce the time for organizing fixed size documents? There are also implementation
issues on how emerging behavior or physical forces can be implemented and supported by
the system.

Other open questions include rotation or zooming. We found a tendency of fewer incorrect
answers in relation to incidental rotation (v3). It is still open for further investigation. For
example, how can we improve existing incidental rotation or sloppiness to support the user?
This is closely related to questions about general limitation or emerging metainformation,
such as whether limited space in binders would support knowledge workers. Since emerging
metainformation is created over time, the appropriate approach would include long term tests.

We implemented different zooming methods in WildDocs (smooth zooming, quickzoom,
and menu zoom). There was a tendency among those users who had the choice between
them (i. e., v2) toward the use of quickzoom for the finding part (see Fig. 5.17 on page 203).
However, it is still an open question as to whether positive or negative aspects can be found
among the different variants with respect to the situation they are used in. How would people
use them? Which method would show a significant effect for organizing or finding time?

We argue that there is a large difference between VKB or Tinderbox on the one side and
OmniGraffle on the other regarding the variety of visual cues for objects. It is open for further
discussion which and how many visual cues are optimal to use for spatial knowledge structure.
A relevant issue is the limitation of visual working memory capacity (Ware, 2004, 355). It is
for future work to discover this aspect with respect to spatial hypertext applications.

An interesting question is how WildDocs could be used in international context. How do
offices look in other cultures? Which paper structures or workflows can be observed? How is
the understanding of bindings to people in other cultures? Answers to those questions would
be relevant to see the need for specific bindings and to implement them in WildDocs.

6.2.2. Improving WildDocs

WildDocs is a prototypic implementation. In Chap. 4 we pointed several times to potential
improvements or bugs that are to be addressed in the future.

WildDocs follows the philosophy of managing many documents on different levels. Es-
pecially smooth zooming on a space with many objects causes heavy load on the machine.
Beside appropriate hardware, also software issues play a role. Beside more efficient frame-
works, internal improvements to reach better efficiency are needed. In the analysis phase of
available frameworks or components, we discussed writing the application on Mac OS X us-
ing Objective-C as the main programming language and Quartz (Apple Computer, 2006) for
2D or OpenGL (Apple Computer, 2005b) for 3D rendering (as opposed to Java, which we
used). This may be an option in the future.

There are problems that are based on the underlying framework Piccolo, such as index
pusher limits (see Figures on page 145 or 147). Other important features, such as text piping
among different documents, extended file import (e. g., native PDF), or more realistic shadows

214

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 215 — #217 i
i

i
i

i
i

6.2. Future Work

Figure 6.2.: Inertia/friction simulation in DynaWall demonstrating by “pushing” a document,
which moves to the other side of the display – pictures taken from the Roomware
demonstration movie (Streitz et al., 2002b), used with permission

are essential for productive long term use of WildDocs. Additional features, such as support
for annotation or visual cues would be desirable.

Even though a spin-off of our work, bindings play an important role. We implemented
basic parts. However, as mentioned in Chap. 4, some more coding needs to be done in order
to have them ready to be used.

6.2.3. Extending WildDocs

Paper-like Movement

Beside the discussed features (zooming, rotation, and fixed size documents), also physical
forces could be implemented in WildDocs, such as gravity, friction, or inertia. They would
support emerging structures without causing unexpected behavior.1

An example of the implementation of physical forces is DynaWall (Streitz et al., 2002a),
“an interactive electronic wall, representing a touch-sensitive vertical information display and
interaction device that is 4.50 m wide and 1.10 m high” (Streitz et al., 2002a, 1). Figure 6.2
shows pictures of the installation. Another example is BumpTop (Agarawala & Balakrishnan,
2006), a prototypic application that simulates the effects of friction, gravity, and inertia on
icons placed in a 3D environment.

Caused by its width, it may become necessary to to drag a document several meters. How-
ever, this would be inconvenient. Therefore, DynaWall simulates what would be experienced
in the real world as a mix of inertia and friction. The users can push documents into a certain
direction. Even though the object is released, it still moves further. The above mentioned
figure depicts a sequence of pictures that represent the movement of a pushed object.

This is an example for partly implemented real world forces. WildDocs would use those
forces to support emerging structures with simulations of which users are aware of due to
their world knowledge.

Mixed Environments, Large Displays, and Multi-User

WildDocs could be implemented in mixed environments, such as described in Sect. 2.3.1
(e. g., Wellner, 1993; Ashdown, 2004). Projections of digital paper on the desk would show
similar behavior to that of real paper. The interesting question in this context is what structures

1Unexpected behavior may be caused by users who may not expect a computer to simulate physical forces.

215

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 216 — #218 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

Figure 6.3.: Two windows in Squeak (left), rotated Wild Windows window on Mac OS X
(center), and the Perturbed Desktop on Mac OS X (right) – third screenshot taken
from Singh (2005, Fig. 4)

people would create and which metainformation could be gained from applied real world
behavior. The same question appears for large touchscreen.

Furthermore, we are interested in finding out how emerging structures affect collaborations.
Our usability test did not include the exchange of information among participants. It is un-
known how WildDocs spatial structures would be perceived and interpreted among members
of a group of people. A special question arises about the relevance of cultural background
especially with respect to sloppiness and the used binding types. All people have experi-
ences with the same physical forces, but they may have different preferences about disorder
of documents on a desk.

Desktop and Window Manager

Another idea that we discussed in the beginning of our research was to add rotation, sloppi-
ness, and zooming to the computer desktop and application windows. An essential feature is
rotation or zooming of individual windows and keeping them fully functional. Some environ-
ments are already capable of doing this. For example Squeak, a Smalltalk implementation,
can rotate or scale windows individually. The left screenshot in Fig. 6.3 depicts two windows
in Smalltalk. Both are rotated, the left one is additionally scaled down. Both windows are
fully functional.

Our main development was on Mac OS X. Therefore, we took a first look at possibilities
on this machine. We initiated a prototype for turning and scaling an individual window,
named “Wild Windows”2 (Atzenbeck, 2005). This prototype was a proof of concept to show
the possibility of scaling and rotating windows on Mac OS X. The second screenshot in
Fig. 6.3 depicts the application’s window. It could rotate stepwise or continuously, shrink,
grow, or oscillate. The window was mostly functional, even while rotating or oscillating.3

The implementation is in Objective-C and uses unofficial Apple APIs.
Another example of rotated windows on Mac OS X is depicted at the right screenshot in

Fig. 6.3. It shows the Perturbed Desktop (Singh, 2005). It uses Apple’s Sudden Motion
Sensor (Apple Computer, 2005a). The Sudden Motion Sensor is a hard drive protection for
some of Apple’s mobile computers that aims to parks the hard drive head on severe vibra-

2We would like to thank Wade Tregaskis for his effort in coding the prototype.
3Code for translating mouse events was implemented, but the underlying APIs (particularly relating to drawing)

could not easily be modified. This left many actions not supported, such as opening of pop-up menus.

216

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 217 — #219 i
i

i
i

i
i

6.2. Future Work

tions, for example, when the computer is accidentally dropped. However, it also can be used
to detect the computer’s orientation. A triplet {x,y,z} symbolizes the inclination left/right,
back/forward, and the angle of the machine’s bottom relative to the ground (Singh, 2005).

Windows on the Perturbed Desktop rotate in dependency of the computer’s physical move-
ment. “The perturbed desktop starts life normally, but soon gets very . . . perturbed. The
orientation of on-screen windows is set to be a strangely complicated function of several
things: the physical orientation of the PowerBook4, the amount of resources consumed by the
application, and how much the user is using the application” (Singh, 2005). All windows are
functional, independent of their orientation.

These examples have shown that a WildDocs desktop or window manager version respec-
tively with emerging sloppiness and rapid zooming would be possible. Additionally, instead
of icons, the application windows (i. e., document) would exist. Their size would be a matter
of scale. Bindings could collect any windows.

Currently, there are no plans for WildDocs to support 3D environments, because apparently
“3D effects make no difference to the effectiveness of spatial memory in monocular static dis-
plays” (Cockburn, 2004, 30). However, it is supposed to have adornment-like visualization of
3D interaction implemented, such as turning a page. 3D window managers, such as described
in van Dantzich et al. (1999) or Robertson et al. (2000), or semi-3D window managers, such
as Looking Glass5 (Kawahara et al., 2004) are related examples.

The research group around Jeff Raskin had a similar idea about having all documents open
and visible on a virtual desk, using zooming to bring a document closer or to put it further
away:

“We believe that Archy6 is capable of doing everything that now requires ap-
plications scattered about your desktop and program files. Archy contains only
your content, and the commands that modify your content – no desktop, no ap-
plications, no files. In the future, you will zoom in to the content you wish to
modify, and then modify it directly. No launching applications, no opening files,
and only one set of principles governing every operation.” (Raskin Center, 2006)

6.2.4. Input Device

WildDocs supports a 2D space. Users can navigate freely in any direction. It also provides
rapid zooming. Furthermore, documents can be moved, and in a future version possibly
edited.

Today’s common input devices, such as mouse, keyboard, graphic table, or trackpad do
not support WildDocs features well. Therefore, we designed a special input device. We first
published our idea in Atzenbeck & Nürnberg (2005c, 292). Figure 6.4 depicts a sketch.

The output device is also used as input device. It is a large touchscreen. Users can directly
move or annotate documents. By using a touchscreen we avoid to split input location (e. g.,
mouse) and output location (i. e., screen), and provide a more natural way of working.

4PowerBook is the name of a series of portable computers manufactured by Apple Computer, Inc. – Author’s note.
5See http://www.sun.com/software/looking_glass/ for the project site or https://lg3d-core.dev.java.net for the devel-

oper site (visited on 2006-03-10).
6Archy is an extensible text editor. It is designed to support also non-text media, such as images, but has currently

no implementation for it. – Author’s note.

217

http://www.sun.com/software/looking_glass/
https://lg3d-core.dev.java.net

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 218 — #220 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

Large touch screen

Right handleLeft handle

Zoom direction

Vertical navigation

Horizontal navigation

Figure 6.4.: Sketch of an input device for WildDocs

One issue is that many touchscreens are restricted to one single input location, that is, the
cursor. WildDocs needs to be able to distinguish whether the user wants to move, rotate, or
annotate a document. Explicitly changing modes is unnatural. Therefore, we support the idea
of implicitly changing modes by either the input device or dual touch recognition.

A user’s intention to annotate can be easily recognized by the system, because a special
pen is only used for annotations. The hardware must be able to distinguish between the
pen input and others, for example, a finger. Moving a document would be performed by
using one or more fingers or the complete hand. However, the screen has to be capable of
detecting multiple spots. WildDocs would then calculate the offset as well as the rotation
based on the given input. For example, documents can be rotated, if the system tracks the
movement at least two input coordinates. One single finger may not give enough data for
that. There is research done in the development and usage of two or more input coordinates
on touch screens (Wu & Balakrishnan, 2003; Rekimoto, 2002; Yee, 2004; Matsushita et al.,
2000). Alternatively, also pens could be used that can express rotation, such as the Intuos3
Art Marker, a recently developed pen that is rotation-sensitive at 360 degrees.7

Beside a given manual rotation or offset, the movement would also depend on additional
behavior, such as simulation of friction or gravity. For example, a movement similar to the
one shown in Fig. 2.15 on page 52 would be possible.

Navigation on the pane is supported by the input device itself. Figure 6.4 depicts two
handles on both sides of the monitor. The user can grab one and move the monitor freely
along x or y directions. The other hand can be used for annotations on documents or for
moving documents on the screen. The navigation appears similar to users as if they would
have a frame in their hands that is moved on top of a desk: They could see part of the desk
through the frame. By moving it further to the right, the viewport would also move to the
right. We believe that this input device would support the user by its intuitive and realistic
behavior for navigation.

The remaining feature is zooming. People get closer toward an object if they want to see it
in greater detail. We transferred this idea to our input device. Using one of the handles, the
user can press the screen (possibly perpendicularly) toward the virtual desk. This will result
in getting closer to the scene (i. e., zooming in). Pulling the screen toward the user’s head will

7The Intuos3 Art Marker product page is available at http://www.wacom-europe.com/int/products/intuos/input.asp?
lang=en&pdx=44 (visited on 2006-04-04).

218

http://www.wacom-europe.com/int/products/intuos/input.asp?lang=en&pdx=44
http://www.wacom-europe.com/int/products/intuos/input.asp?lang=en&pdx=44

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 219 — #221 i
i

i
i

i
i

6.2. Future Work

result in zooming out. The mechanical machinery needs to be easy to press or pull, but also
must have some resistance. For example, it should not be pressed down by the weight of a
user’s hand, for example, when annotating. It must stay at the position where a user stopped
pressing or pulling the monitor.

We summarize that the designed input device is based on natural behavior and ease of use.
Modifications on structures can be performed easily by using fingers or a hand on the touch-
screen. Annotations can be written with an appropriate pen. Navigation and zooming are
supported by an underlying mechanical part. The design allows rapid and natural navigation
and zooming, both applicable synchronously with one hand, possibly even during annotating
or moving documents with the other.

6.2.5. Integration in Structural Computing Environments

Currently, WildDocs is a monolithic system. There are no defined interfaces of its services
visible from the outside. However, internally it aims to divide structure (bindings), data (low
level documents), and behavior (machines). This idea is taken from structural computing,
a research branch that was born within the hypertext community and stated originally the
“primacy of structure over data in computing” (Nürnberg et al., 1997, 96). Later, this view
was broadened by realizing that “system infrastructure must assume that any entity is at all
times (at least potentially) both structured and structuring” (Nürnberg et al., 2004a, 2).

This demands different services for WildDocs. Component-based architectures are built to
offer support for this. Examples include Construct, which provides multiple open middleware
services (Wiil et al., 2001) and special support for service developers (Wiil et al., 2000), or
Callimachus (Tzagarakis et al., 1999), which provides a P2P architecture for services (Tza-
garakis et al., 2000) and support for structuring primitives (Tzagarakis et al., 2003).

WildDocs’s bindings implementation follows the idea of being structured and structuring.
Even though it supports “data” (instances of WDLowLevelDoc) at the very end, the appli-
cation is made to replace them with bindings (i. e., structure). This compares to the EAD
model8, which provides support for elucidating or hiding structure parts (Nürnberg et al.,
2004a, 2005). Its development is based on the criticism of node–link structures, which have
the focus on nodes. EAD focuses exclusively on structure.

In a component-based system, WildDocs would consist of several services. There would be
a structure server that handles spatial structure. Because of the complexity of bindings (beside
arguments of reuse), we tend to support the idea of a binding structure server that includes
also binding related behavior, such as opening binding mechanisms. Another service could
be a spatial parser, which generically can be interpreted as an information retrieval system
that makes implicit knowledge explicit.

Distributed architectures challenge latency. This becomes especially important in environ-
ments that require immediate feedback. Some behavior, such as incidental rotation while a
document is moved, needs to be calculated in real time. Therefore, we argue that the behavior
has to be processed at the client side. However, conceptually spoken, the behavior should be
handled by a server.

A possible solution would be to send a behavior processor to the client at initialization
time. This module would be able to parse behavior patterns that are handled by a behavior

8The EAD model is “named for the three most important operations exposed by the interface to the model: eluci-
date; analogize; and, delete.” (Nürnberg et al., 2004b, 241)

219

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 220 — #222 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

or structure server. The patterns would hold information about how behavior is applied to
objects. In order to provide this, a model that can be used to describe all possible required
behavior is needed.

For example, when a document movement is initialized that requires incidental rotation
during movement, the client would request the behavior pattern to be parsed at the behavior
processor at the client side, which extracts the information and instantiates a machine that
handles the behavior in real time. Caching may help to provide better overall performance.
The results would then be sent back to the structure service.

This architecture leads to problems that have to be solved. One is keeping consistency,
which includes locking parts while the structure is modified. The question of which parts are
relevant for the behavior arises. Another issue is history support. The question about whether
behavior should be part of tracking changes is to be answered. For example, behavior may
include a random factor, such as incidental rotation while moving.

6.2.6. Summary

Beside potential future work on improving the existing WildDocs application, we proposed
projects that go beyond what it can provide today. This include implementation of document
behavior based on physical forces. This might lead to better simulations of emerging spatial
structures that could be interpreted by the users’ world knowledge.

Furthermore, WildDocs could work as enhanced computer desktop and window manager
replacement, providing support for zooming, emerging sloppiness, or fixed size documents.
Icons would be replaced by windows to where the user can zoom. WildDocs also could be
used for mixed environments that support projections of digital documents on a real desk. It
would provide emerging metainformation by applying natural behavior on the digital part of
the installation.

Caused by special needs for rapid zooming and navigation on a 2D space that has the size
of a real desk, we designed an input device that can be used for zooming, navigation, and
object modification at ease. This is an alternative to mixed environments and closely based
on natural behavior.

Finally, the question about the underlying architecture is important to answer. Currently,
WildDocs is implemented as a monolithic single user application. However, cutting edge
research on component-based architectures provides solutions to extend WildDocs to an ex-
tensible and scalable and open application. It could provide information spaces of medium or
large scale in multi-user environments.

6.3. Conclusion

Shipman (2001) points to seven directions for future spatial hypertext research. One is to
“determine good design practices for spatial hypertext” (Shipman, 2001, 4). In this thesis we
took one step back by discussing how spatial structure may look like. This may be the “eighth
research direction” of spatial hypertext. We explained simulating behavior and richness of
physical documents on spatial-based knowledge management applications, having in mind
that users’ world knowledge helps understanding them. Even though we are aware that our
description is an abstraction of the physical world itself, it provides a step toward a system

220

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 221 — #223 i
i

i
i

i
i

6.3. Conclusion

Figure 6.5.: Screenshots of Myst (left) and Myst III: Exile (right)

with more “natural” behavior. We have implemented WildDocs to see if we could experience
effects of “naturally” behaving virtual documents.

We do not claim that mimicking the physical world in metaphor-driven applications is
positive per se. Instead, we claim that we need to analyze properties of physical objects im-
plemented in applications, in order to see which ones show positive and which ones negative
effects. This is supported by the fact that paper is a very old medium compared to computers
and therefore may be better understood by people.

However, many applications used for office work are based on metaphors, but implement a
high level of abstraction which causes many metaphor breaks. These were criticized already
two decades ago (Halasz & Moran, 1982). On the other side, “the use of metaphor . . . can
also cripple the interface with irrelevant limitations and blind the designer to new paradigms
more appropriate for a computer-based application” (Gentner & Nielsen, 1996, 72).

A potential reason for many metaphor breaks or highly abstract presentations or behavior
may be found in the fact that computers did not have the capacity to display and offer highly
realistic interaction until recently. This becomes obviously in the development of computer
games. Compared to games a decade ago, current releases offer highly realistic graphics and
movements. Figure 6.5 depicts two examples: Myst, a graphic adventure computer game,
was first released in 1993 (Wikipedia, 2006a). The user interaction for movement reminds of
an interactive slide show. The player can move to the next scene by clicking on the desired
direction on the current picture shown. The first screenshot at the mentioned figure depicts
such a scene. The picture is static. The water does not look realistically. The next version of
Myst had improved graphics. Its sequel (Myst III: Exile, released 2001) introduced 360 de-
gree scenes and moving objects. For example, the second screenshot depicts a scene next to
the sea. The realistic look is improved by showing the waves moving, including naturally
looking reflections in real time. The final version of Myst (Myst V: End of Ages, released
2005) continues the realistic look and feel, but allows also moving around freely in real time.

Games show that realistic look and feel are possible already on today’s computers. Now
we need to find out which simulations of real world properties would have positive effects in
computer applications. With this research, we found effects on realistic behavior of digital
“paper” used in knowledge work.

Our work has contributed to the current research by the development of a detailed de-
scription and terminology of physical structures and bindings as well as novel behavior and
interactions (e. g., quickzoom). Our tests about realistic behavior of real world behavior have
shown some positive effects as well as some tendencies. However, an important issue is still

221

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 222 — #224 i
i

i
i

i
i

Chapter 6. Summary, Future Work, and Conclusion

not solved: How does emerging behavior effect the creation and retrieval of knowledge over
time? This requires a long-term test; the used application must be stable and have features for
productivity use.

The bigger context of our work includes the automatic generation of metainformation, as
briefly discussed in Sect. 2.2.4. Our work focuses especially on attributes and behavior that
are supported by users’ world knowledge. It is a challenge to develop applications that follow
this paradigm. It puts the main focus of interpreting information on users, not computers.

Many other research directions follow a different approach by making machines more “in-
telligent” and increasing their capability of interpreting information. Examples include infor-
mation retrieval or the Semantic Web, which form large research communities currently and
influence many others fundamentally.

There is no competition between both research directions. It is a valid goal to improve
machines in their “understanding” of content or structure. On the other side, it has to be
understood that computers in the context of our work are tools for knowledge workers in
offices. In this respect, it is important to think about how they can match and support the
ability of human minds and thinking best. This takes away the focus of creating applications
that are expected to find out what the users may want. As opposed to this, the center of our
interest is to develop presentations and interactions with the machine that would fit human
minds most appropriately.

Humans cannot compete with computer in the amount of data they can process. However,
in most cases they are still better in interpreting information, especially when world knowl-
edge is required. Computers work well in small universes of discourse, but in many other
cases they do not reach the level of human understanding. With respect to this, our work pro-
poses to put more resources toward creating applications that support the human capability of
interpreting. This goes well in combination with improved data processing on computers.

WildDocs, our prototypic application, follows this direction by providing rich structures
that can be understood due to the users’ world knowledge. This supports office workers in
creating and finding knowledge by “augmenting human intellect”, as Doug Engelbart wrote
almost half a century ago (Engelbart, 1962).

222

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 223 — #225 i
i

i
i

i
i

Part III.

Appendix

223

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 224 — #226 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 225 — #227 i
i

i
i

i
i

Appendix A.

Pre-Work and Introduction

A.1. Participant Agreement

Everyone who participated in the WildDocs usability test was asked to agree with the form
printed on the next page. The document is based on the Code of Practice for Research involv-
ing Human Participants by the Faculty of Engineering and Physical Sciences, University of
Dundee (FEPS Ethics Committee, 2005, 10–12).

225

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 226 — #228 i
i

i
i

i
i

The WD Experiment

Dear Participant:

Thank you for your interest in this project. This page describes what you will be asked to do for the study. Please
read through it and then sign at the bottom to say that you understand and accept the conditions of this study.
If you have questions, feel free to ask the researcher after the test is finished. Please understand that questions
cannot be answered during the test.

The researcher will begin by asking you for some general information about yourself. You will learn from a short
introduction movie how the application that will be tested is working. You also will learn more details about your
task.

Basically, you will see a series of documents (text or pictures) on the screen and you will be asked to organize
them on the screen in a way that allows you to find them quickly afterward. Then you will receive questions that
ask you to find a specific documents that are among the ones you have organized.

You will then be asked to talk about what you think of the tested application. You will also be asked some
questions about the experience of using it.

You as well as your actions on the screen will be recorded during the experiment as this will allow the researchers
to learn more about how easy or how difficult it is to use the system. It will help them to understand what works
and does not work so that they can improve this as well as other systems. Some video clips that show an important
aspect may be used in presentations at research conferences or meetings.

Please note that you are helping the researchers to evaluate a new system. You are not being tested – it is the
system that is being tested. There are therefore no right or wrong answers to the questions you will be asked.

Your participation in this study is voluntary and you can leave the study at any time without penalty or giving
reasons. No undue risk arises from the participation in this study.

All the information which you give us and the video recordings (that is all data) will be stored safely and kept
separate from information about your identity. Access to your data is minimized to the people involved in this
research. If information about you is used for publications or presentations, we will ensure that no reference to
your identity is made. If a photograph or video clip is used for presentation, your name will be changed. With
reference to the use of photographic or video data for presentations, please tick one of the following boxes:

I agree that my likeness (e. g. on video tape) can be used for presentations.

I do not agree that my likeness (e. g. on video tape) can be used for presentations.

It is important that you understand that this is a research project and the prototypic application has only features
implemented that help to answer well defined research questions.

The researchers are very grateful for your help.

In order to obtain an equal start situations for all participants, we ask you not to mention anything about the test
or the tested system to any person that will perform the test after you.

Please date and sign this page below to indicate that you understand and accept the conditions of this study. (The
“Participant/Session ID” will be given by the researcher.) Thank you!

Name of Participant: Participant/Session ID:

Signature:

Date:

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 227 — #229 i
i

i
i

i
i

A.2. Pre-Test Questionnaire

A.2. Pre-Test Questionnaire

Before the test, the participant was asked the following questions:

• Sex (male/female)

• Nationality

• Profession (Student/Lecturer)

• Profession Level (Graduate/Undergraduate)

• Class at University

• How many hours do you use the computer in a typical week?

• What are you doing with the computer?

• How many years of computer experience do you have?

• How many years of GUI experience do you have?

• In which OS are you experienced in?

• With which input devices are you experienced with?

• Are you experienced with spatial organization of objects on the screen? (yes/no)

• Did anyone tell you about this test? (yes/no)

• If somebody told you, what was it?

A.3. Introduction Movie Manuscript

The following text was part of the introduction movies shown to participants. There was
a separate introduction movie for each WildDocs version. Each paragraph indicates at the
beginning for which versions it has been used.

[all:] You can move a document by pressing the left mouse button on it and
moving the mouse.

[all:] Documents can be moved even behind other documents.

[v2 , v3 , v4 :] However, if a document is moved outside the pile’s scope, it is
pushed above it. You will recognize this by moving back the document. Now, it
will be moved on top of the pile. You can use this behavior for moving documents
to the front.

[all:] You also can drag the background by clicking and dragging.

[v1 , v3 , v4 :] Scrollbars can be used to navigate, too. They disappear if all
objects are visible on the screen.

227

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 228 — #230 i
i

i
i

i
i

Appendix A. Pre-Work and Introduction

[v2 , v3 , v4 :] A shortcut to browse stacks is CTRL-L or CTRL-R for moving
the node below the cursor to the left or to the right. The moved document is put
to the very front.

[all:] All shortcuts that are available for you are marked on the keyboard.

[all:] If you want to push a document to the very front manually, press CTRL-U
(for “move up”). For moving it into the very back, press CTRL-D (for “move
down”).

[all:] A selection tool gives you the opportunity to move more than one docu-
ment at a time. To do this, move your mouse onto the document that you would
like to move and press CTRL-A. A transparent white rectangle with a red border
appears. All documents that intersect with this rectangle will be moved. You
can expand this rectangle by moving the mouse onto any document and press-
ing CTRL-A again. Immediately, the rectangle expands so that it includes the
complete topmost document on which the cursor is currently located. You may
continue until all documents that should be moved intersect at least partly with
the rectangle.

[all:] To move the selected nodes, move the cursor to the desired destination and
press CTRL-M (for “move”). All documents that intersect with the transparent
rectangle will be automatically dragged to this spot. After pressing CTRL-M, the
selection rectangle fades out.

[all:] If you have some documents selected and want to get rid of the selection
rectangle without moving the documents, press CTRL-W (for “wipe out”). The
transparent rectangle will fade out.

[v2 , v4 :] Moving a stack results also in straightening the stack. If you want to
straighten a stack without moving documents via the selection rectangle, move
the mouse on top of it and press CTRL-S (for “straighten”). All documents that
are directly below the cursor will be aligned to a straight looking stack.

[v2 , v3 , v4 :] The system has a desk metaphor. That is a brown rectangle in
the background that symbolizes a desk. You may move documents temporarily
outside this area, as you can do in the real world by putting them onto the floor.
However, finally, they have to be on the desk again. They may overlap the desk
imitation’s border to some extend, as they could also in the real world without
falling down. This behavior of falling down is not implemented; the user has to
take care of this rule.

[all:] The application allows basic zooming through the Zoom menu. You can
zoom in to 125 % relative to the current view as often as you want as well as zoom
out to 80 % relative to the current view. If you want to zoom back to 100 %, select
the appropriate menu entry.

[all:] Even though there are several other menu entries, do not use any other than
zoom.

[v2 :] As you can see on the Zoom menu entries, you may use shortcuts to zoom
in or out. Those are CTRL-0 to zoom in, CTRL-- to zoom out, and CTRL-= to
zoom to 100 %.

228

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 229 — #231 i
i

i
i

i
i

A.3. Introduction Movie Manuscript

[v2 :] Smooth zooming can be used to zoom in or out seamlessly. For zooming in
press the right mouse button somewhere on the background and keep it pressed.
Then, move the mouse to the right. The more you move it to the right, the faster
zooming becomes. If you want to zoom out, keep the right mouse button pressed,
but move the mouse to the left. Also here, the further you move to the left, the
faster zooming becomes. To stop smooth zooming, just release the right mouse
button.

[v2 :] Quickzoom is a way to zoom very quickly to view the used space com-
pletely and zoom back again to a designated spot. In order to see all objects, press
CTRL-Z (for “quickZoom”). A fading out magenta colored rectangle shows the
area of the previous screen in order to give you some more orientation. If you
want to zoom back, move the mouse to the desired spot and press CTRL-Z again.
The view will zoom to where the mouse is located. You need to know that if you
use the Zoom menu or smooth zooming after quickzoom has fully zoomed out,
the next quickzoom command CTRL-Z will show the full zoom-out view again
next.

[v3 :] There are two types of rotation for documents: One is emerging rotation.
This rotation happens automatically while you click on documents, for example,
for moving them. You also will experience this when documents are moved auto-
matically, for example, through selection CTRL-A and move shortcut CTRL-M.
Additionally, some random offset is applied to automatic movements.

[v3 :] The other rotation type is rotation on purpose. Double click a document
with the left mouse button and hold the button at the second click. A circle will
be put to where the rotation center is located. Then, move the mouse in order to
rotate the document, still having the left mouse button pressed. After the desired
angle is reached, release the mouse button. (You will experience that a rotated
document is pushed on top if it leaves a stack’s scope.)

[v1 :] Objects have handlers, displayed as small circles. You can press the mouse
button on one of them and resize the object. Pictures show a distortion when
resized.

[v2 , v3 , v4 :] The documents that you see on the screen may be split into several
individual pages.

[all:] Your task is divided into two parts. Part I: Organize – Part II: Find. Think
aloud if you experience any problem at any time during the test.

[all:] Part I: Organize.

[all:] You will see a pile of documents on the screen.

[v2 , v3 , v4 :] They are split up into several pages. Their sequence is reversed:
The last page is above the previous one.

[all:] Wait until the staff tells you to start organizing.

[all:] Place the documents in a way that allows you to find them quickly af-
terwards. You will be ask questions like: “Find the document that has this or
that specific visual attribute or content.” You may use all previously explained
features.

229

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 230 — #232 i
i

i
i

i
i

Appendix A. Pre-Work and Introduction

[all:] Think aloud if you experience any problem at any time. As soon as you
finish, announce it to the experiment staff.

[all:] Part II: Find

[all:] The experiment staff will now show you finding tasks one by one that you
are asked to do. Before you start searching, read the question number and the
complete task description aloud. Then, start searching. Try to complete the tasks
as quickly as possible.

[all:] In this stage of the test, perform only the requested finding task. Do not
start re-organizing.

[all:] After you found the document, read the requested part of it aloud, as re-
quested in the task description. Then, continue with the next task.

[all:] Think aloud if you experience any problem at any time. That may include
problems in understanding questions.

[all:] Thank you for your support!

A.4. Foreign Language Sample Documents

The following pages show the four samples of foreign languages that we presented to the
participants, as discussed in Sect. 5.2.5. All samples are taken from the Human Rights (United
Nations, 1948). The first one is Greek1 on the facing page, then Arabic2 on page 232, Hebrew3

on page 233, and finally Japanese4 on page 234.

1Page 9 from the PDF version at http://www.unhchr.ch/udhr/lang/grk.htm
2Page 5 from the PDF version at http://www.unhchr.ch/udhr/lang/arz.htm
3Page 1 from the PDF version at http://www.unhchr.ch/udhr/lang/hbr.htm
4Page 8 from the PDF version at http://www.unhchr.ch/udhr/lang/jpn.htm

230

http://www.unhchr.ch/udhr/lang/grk.htm
http://www.unhchr.ch/udhr/lang/arz.htm
http://www.unhchr.ch/udhr/lang/hbr.htm
http://www.unhchr.ch/udhr/lang/jpn.htm

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 231 — #233 i
i

i
i

i
i

 #

 #

 #

 #

 #

 #

 # #

 #

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 232 — #234 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 233 — #235 i
i

i
i

i
i

! ✁ ✄ ✆ !✟ ✆ ✟✠ ✡ ☞✍ ✟ ✎ ✑✄ ☞ ✔ ☞✕ ✎ ✠ ✎ ✆ ✁✍ ✔ ✡ !

✟ ✠ ✡ ✎ !! ✄ ✆ ! ✎✔ ✎ ☞ ✆ ☞✠ ✑ ☞ ✚ !✄ ✢ ✡✟ ✆ ✟✠ ✤ ☞✕ ✦ ★ ✢ ✩✍ ✔ ✡ !✍ ! ✠ ✕ ✎ ✠ ✎ ✆ ✁ ☞ ✎✢ !✎✎✕✠ ✕ ✟ ☞ ! ✎✕ ✎ ✑ ✬ ★ ✤✡ ✎ !✔ ✎ ✭ ✠✮ ✢ ★ ✎ ✦ !
✬ ✔ ✯ !✍ ✎ ✟ ✢ ! ✎

✲ ✍
✟ ✎ ✑ ☞

✟ ✠ ✡ ✎ !✟ ✎ ✁ ✟ ✁ ! ✎✕ ✎ ✠ ✎ ✆ ✁ ☞✍ ✔ ✡ !✳ ✠ ✎ ✁ ✠ ☞ ✎✎ ✟ ✠ ✢ ☞ !✍ ✠ ✢ ✑ ✩✍ ✠ ✠ ✡ ✄ ★✎ ✑ ✶ ★ ✢! ✢ ✬! ✤ ✎ ★ ✯ ✩ ☞✟ ✢✕ ✎ ✢ ✎ ✤ ✡ !✷✳ ✠ ✤ ☞ ✎
✮ ✍

✟ ✎ ✑✎ ☞ ✢
✎ ✤ ! ✠ ✠✟ ✆✠ ✄ ✎ ✯ ✠✢ ✎ ✤ ✡✕ ✎ ✄ ✠ ✦ ✩✄ ✎ ☞ ✠ ✔ !! ✤ ✎ ✩ ✡ ! ✎✳ ✩ ✎✕ ✎ ✄ ✠ ✦ !✔ ✦ ★ ✩✮ ✄

✎ ✭ ✦ ✩ ✩ ✎✁ ✄ ✆ ✎ !✢ ✡ ✄ ✆✎ ✠ ✕ ✎ ★ ✠ ✡ ✢✟ ✢✟ ✆✲ ✍ ✔ ✡

✟ ✠ ✡ ✎ !✦ ✄ ✆ ! ✎✠ ✤ ✎ ✠ ✦✡ ✎ !✕ ✎ ✠ ✎ ✆ ✁ ✢✍ ✔ ✡ !! ✤ ✠ ✠ ! ✕✕ ✎ ✤ ✶ ✎ ✩✦ ✎ ✆ ☞✎ ✤ ✎ ✚ ✟ ✢✟ ✢✮
✬ ✎ ✦ !✡ ✟ ✢✡ ! ✠✍ ✔ ✡ !✮

✭ ✎ ✤ ✡✚ ✟ ★ ✩ ✆✮ ✳
✎ ✄ ✦ ✡

✻ ✠ ✟ ✢ ! ✟✕ ✡✎ ☞ ! ✠✟ ✑! ✔ ✠ ✄ ✩✕ ✎ ✯ ✠ ✄ ✑ ☞✲ ✠
✎ ✆ ✠ ✔ ☞ ✎

✟ ✠ ✡ ✎ !✦ ✄ ✆ ! ✎✠ ✤ ✎ ✠ ✦✡ ✎ !✍ ✔ ✬ ✟✕ ✡✍ ✕ ✎ ✦ ✕ ★ ✕ !✟ ✢✠ ✭ ✦ ✠✕ ✎ ✔ ✠ ✔ ✠✳ ✠ ☞✲ ✕
✎ ✩ ✎ ✡ !

✟ ✠ ✡ ✎ !✍ ✠ ✩ ✑ ! ✎✍ ✠ ✔ ✶ ✎ ✡ ✩ !✳ ✎ ✶ ✄ ✡ ☞✕ ✎ ✩ ✎ ✡ !✕ ✎ ✔ ✦ ✎ ✡ ✩ !✎ ✄ ✁ ✦✎ ✄ ✢ ✠ ✡ ✎! ✟ ✠ ✶ ✩ ☞✕ ✡✍ ✕ ✤ ✎ ✩ ✡✕ ✎ ✠ ✎ ✆ ✁ ☞✔ ✎ ✭ ✠ !✟ ✢✮ ✍ ✔ ✡ !
! ✔ ✎ ☞ ✆ ☞! ✆ ✄ ✑ ☞ ✎✟ ✢✎ ✕ ✎ ✠ ✢ ✠ ✡✕ ✎ ✆ ✁ ☞ ✎✢✎✎!✄ ☞ ✶ ✟! ✢ ✡ ✟ ✎✷✠ ✎ ✤ ✩ ✎✄ ✎ ✩ ✶ ✎✍ ✕ ✡✑ ✠ ✠ ✭ ✟! ✩ ✔ ✬ ✟✕ ✠ ✕ ✄ ☞ ✦✕ ✡ ✟ ✑ ! ✟ ✎✕ ✩ ✄

✍ ✠ ✠ ✦ !✻ ✎ ✕ ☞✄ ✕ ✠✲ ✕
✎ ✄ ✠ ✦

✟ ✠ ✡ ✎ !✕ ✎ ✤ ✠ ✔ ✩ ! ✎✕ ✎ ✄ ☞ ✦ !✎ ☞ ✠ ✠ ✦ ✕ !✮
✟ ✎ ✑ ★ ✟✿ ✎ ✕ ✠ ✢ ☞✍ ✑✳ ✎ ✶ ✄ ✡✕ ✎ ✩ ✎ ✡ !✮ ✕

✎ ✔ ✦ ✎ ✡ ✩ !✟ ✎ ★ ✠ ✚ ✟✭ ✦ ✠✔ ✎ ☞ ✆✠ ✟ ✟ ✆✟ ✡✕ ✎ ✠ ✎ ✆ ✁
✍ ✔ ✡ !✟ ✡ ✎✕ ✎ ✠ ✎ ✄ ✠ ✦✔ ✎ ✭ ✠ !! ✔ ★ ✬ ! ✎✟ ✑

✲ ✳ ✩
✎ ✠ ✬

✟ ✠ ✡ ✎ !! ✤ ☞ ! ✎✕ ★ ✕ ✎ ✢ ✩✳ ✕ ✎ ! ✩ ☞✟ ✢✕ ✎ ✠ ✎ ✆ ✁✕ ✎ ✠ ✎ ✄ ✠ ✦ ✎! ✟ ✡✡ ✎ !✠ ✡ ✤ ✕☞ ✎ ✢ ✦! ✩ ✎ ✠ ✬ ✟✍ ✟ ✢ !✟ ✢✕ ✎ ☞ ✠ ✠ ✦ ✕ !✲
✎ ✁

✻ ✆ ✠ ★ ✟✢ ✁ ✠ ✄ ✆ ✩✕ ✄ ✯ ✑ !✠ ✤ ✁ ✡ ☞✟ ✆✠ ✡ ☞✍ ✟ ✎ ✑ !✕ ✡✢ ✁ ✄ ✆ ! !✕ ✡ ✁ !✄ ☞ ✔ ☞✕ ✎ ✠ ✎ ✆ ✁✍ ✔ ✡ !✕ ✩ ✄ ✆✍ ✠ ✶ ✢ ✠ !✕ ✠ ✟ ✟ ✆✟ ✆ ✟✍ ✠ ✩ ✑ !

✮ ✕
✎ ✩ ✎ ✡ ! ✎✠ ✔ ✆✟ ✆ ✢✔ ✠ ✦ ✠✟ ✆ ✎✿ ✎ ✶✠ ✕ ✄ ☞ ✦✢ ✠✎✎!✔ ✠ ✩ ✕✔ ✶ ✤ ✟✎ ✠ ✤ ✠ ✑✿ ✡ ✢ ✠ ✎✮ ✦ ★ ✚ ✟✻ ✄ ✔✔ ✎ ✩ ✠ ✟✮ ✻

✎ ✤ ✠ ✦ ✎✭ ✦ ✠✟ ✢✔ ✎ ☞ ✆✟ ✡
✕ ✎ ✠ ✎ ✆ ✁ !✟ ✡ ✎✕ ✎ ✠ ✎ ✄ ✠ ✦ !✮

✎ ✟ ✟ !✦ ✠ ✚ ☞ ! ✟ ✎✍ ✠ ✑ ✯ ✩ ✡ ☞✮ ✍ ✠ ✠ ✕ ✶ ✄ ✔ !✍ ✠ ✠ ✩ ✎ ✡ ✟
✮ ✍ ✠ ✠ ✩ ✎ ✡ ✟ ✤ ✠ ☞ ✎! ✄ ✆ ! ! ✢✕ ✎ ✤ ✎ ✄ ✬ ✑ ☞! ✟ ✡! ✔ ★ ✬ ! ! ✎

✍ ! ✠ ✟ ✑✡ ! ✕✕ ✠ ✟ ✟ ✆! ✟ ✠ ✑ ✠ ✎☞ ✄ ✬ ☞✠ ✭ ✎ ✟ ✆ ✎ ✡✕ ✎ ✤ ✠ ✔ ✩ !✕ ✎ ✄ ☞ ✦ !☞ ✄ ✬ ☞ ✎✍ ✠ ✭ ✎ ✟ ✆ ✎ ✡ !✕ ✎ ✯ ✄ ✡ ☞ ✢✲ ✍ ✚ ✎ ★ ✠ ✢

✿ ✠ ✑ ✭
✲ ✡

✟ ✆✠ ✤ ☞✍ ✔ ✡✎ ✔ ✟ ✎ ✤✠ ✤ ☞✳ ✠ ✄ ✎ ✦✢ ✎✎✎✍ ✠✍ ✆ ✄ ✑ ☞✲ ✍ ! ✠ ✕ ✎ ✠ ✎ ✆ ✁ ☞ ✎✍ ✟ ✎ ✆✎ ✤ ✤ ✎ ✦! ✤ ✎ ☞ ✕ ☞✮ ✳
✎ ★ ✯ ✩ ☞ ✎✻ ✆ ✠ ★ ✟! ☞ ✎ ✦✍ ! ✠ ✟ ✑

✶ ✎ ! ✤ ✟✢ ✠ ✡✎ ! ✑ ✄ ☞✦ ✎ ✄ ☞✟ ✢✲ !
✎ ✦ ✡

✿ ✠ ✑ ✭
✲ ☞

❁ ❂ ❃✟ ✆✍ ✔ ✡✠ ✡ ✆ ✁✕ ✎ ✠ ✎ ✆ ✁ ✟✕ ✎ ✠ ✎ ✄ ✦ ✟ ✎✎ ✑ ☞ ✬ ✤ ✢✢ ✁ ✄ ✆ ! ☞✎ ✁✡ ✟ ✟! ✠ ✟ ★ !✡ ✠ ! ✢ ✟ ✆✠ ✩ ✑ ✚ ✩✮
✑ ✁ ✶✮

✑ ☞ ✯✮ ✳ ✠ ✩✮ ✳
✎ ✢ ✟

✮ ✕ ✔! ✑ ✔✕ ✠ ✚ ✠ ✟ ✎ ★✎ ✡! ✑ ✔✕ ✎ ✠ ✑ ☞ ☞✮ ✕
✎ ✄ ✦ ✡✟ ✟ ✶ ☞✡ ✯ ✎ ✩✠ ✩ ✎ ✡ ✟✎ ✡✮ ✠ ✕ ✄ ☞ ✦✮ ✳ ✠ ✤

✬! ✔ ✠ ✟✎ ✡✔ ✩ ✑ ✩✲ ✄ ✦ ✡

❁ ❅ ❃! ✟ ✎ ✔ ✶
✮
✎ ✁ ✩✡ ✟! ✟ ★ ✎ ✠✍ ✔ ✡✟ ✑✠ ★! ✔ ✩ ✑ ✩✮ ✠ ✤ ✠ ✔ ✩ !✟ ✑✠ ★! ✕ ✎ ✆ ✩ ✭✎ ✡✟ ✑✠ ★! ✔ ✩ ✑ ✩✠ ✩ ✎ ✡ ✟ ✤ ✠ ☞ !✟ ✢! ✤ ✠ ✔ ✩ !✎ ✡

❆ ✄ ✡ !! ✠ ✟ ✡ ✢✡ ✎ !✮ ✻ ✠ ✠ ✢✳ ✠ ☞❆ ✄ ✡ ! ✢✡ ✠ !✮ ✕ ✠ ✡ ✩ ✯ ✑✳ ✠ ☞ ✎✡ ✠ ! ✢! ✤ ✎ ✕ ✤✮ ✕
✎ ✤ ✩ ✡ ✤ ✟✳ ✠ ☞✡ ✠ ! ✢✕ ✟ ✎ ✚ ✤✳ ✎ ✚ ✟ ✢✠ ✩ ✯ ✑✳ ✠ ☞ ✎

! ✕ ✎ ✤ ✎ ☞ ✠ ✄ ✢✕ ✟ ☞ ✶ ✎ ✩✟ ✆! ✟ ☞ ✶ !✲ ✕ ✄ ✦ ✡

✿ ✠ ✑ ✭
✲
✶✟ ✆✍ ✔ ✡✢ ✠✎ ✟✕ ✎ ✆ ✁ !✮ ✍ ✠ ✠ ✦ ✟✕ ✎ ✄ ✦ ✟✳ ✎ ✦ ✚ ☞ ✟ ✎

✲ ✠ ✢ ✠ ✡

✿ ✠ ✑ ✭
✲ ✔✡ ✟! ✠ ! ✠✍ ✔ ✡✔ ☞ ✑✎ ✡✔ ☞ ✑ ✎ ✢ ✩✷✕ ✎ ✔ ☞ ✑✄ ✦ ✭ ✎✍ ✠ ✔ ☞ ✑✎ ✄ ✭ ✡ ✠✟ ✆ ✟

✲ ✍ ! ✠ ✕ ✎ ✄ ✎ ✯

✿ ✠ ✑ ✭
✲ !✡ ✟! ✠ ! ✠✍ ✔ ✡✳ ✎ ✕ ✤✮ ✍ ✠ ✠ ✎ ✤ ✠ ✑ ✟✡ ✟ ✎✭ ✦ ✠ ✟✎ ✡✢ ✤ ✎ ✑ ✟

✮ ✍ ✠ ✠ ✄ ✁ ✆ ✡✠ ✕ ✟ ☞✍ ✠ ✠ ✢ ✎ ✤ ✡✎ ✡✲ ✍ ✠ ✟ ✠ ★ ✢ ✩

✿ ✠ ✑ ✭
✲
✎✟ ✆✍ ✔ ✡✠ ✡ ✆ ✁✕ ✎ ✠ ! ✟✄ ✆ ✎ ✩✟ ✆ ☞✍ ✎ ✬ ✩✕ ✎ ✠ ✢ ✡ ✆✠ ✤ ★ ☞✲

✬ ✎ ✦ !

✿ ✠ ✑ ✭
✲ ✁

✟ ✆ !✢✎✎✍ ✠✠ ✤ ★ ✟✬ ✎ ✦ !✍ ✠ ✡ ✆ ✁ ✎✡ ✟ ✟! ✠ ✟ ★ !! ✤ ✶ ! ✟✢✎✎!✟ ✢✲
✬ ✎ ✦ !✟ ✆ !✍ ✠ ✡ ✆ ✁! ✤ ✶ ! ✟✢✎✎!✠ ✤ ★ ✩✟ ✆! ✠ ✟ ★ !

! ✄ ✠ ★ ✩ !✕ ✡✯ ✩✎✎✕✢ ✁ ✄ ✆ ! !✕ ✡ ✁ !✠ ✤ ★ ✩ ✎✟ ✆! ✕ ✭ !! ✠ ✟ ★ ! ✟
✲
✎ ✁ ✆

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 234 — #236 i
i

i
i

i
i

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 235 — #237 i
i

i
i

i
i

Appendix B.

Post-Work and Analysis

B.1. Post-Test Questionnaire

After the test, the participant was asked the following questions:

• What do you think of this application?

• Describe your way of organizing.

• Rate this application on a scale from 1 (worst) to 5 (best).

• Explain your rating.

• (Additional questions that were noted by the administrator during the test.)

• Could you imagine feature for applications that exist already today? Which ones?

• Do you have questions or additional comments?

B.2. Log Files

The following snippet shows the log file for session s01. The first block shows the logged
data after the organization phase, the second block after the finding phase. Counts are accu-
mulating, that means that counts at the second block include also those from the first one.

[WildDocs-1127117012734msec_id2161283.log]

1

2 ∗∗∗ STATISTICS @ Mon Sep 19 09:35:50 CEST 2005 (= 1127115350750 msec)
3 WildDocs version compile time: Mon Sep 19 08:19:33 CEST 2005
4 WildDocs instance (hash code): 2161283
5 Active window title : WD | v4 [fs]
6 56 low level docs on screen
7 5185 px area width of low level doc
8 3584 px area height of low level doc
9 1371 mm area width of low level doc

10 948 mm area height of low level doc
11 164x straighten stack (STRAIGHTENSTACK)
12 2x select node below cursor (SELECTNODESBELOWCURSOR)
13 2x move selected nodes (MOVESELECTEDNODES)
14 0x side push left (SIDEPUSHLEFT)

235

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 236 — #238 i
i

i
i

i
i

Appendix B. Post-Work and Analysis

15 4x side push right (SIDEPUSHRIGHT)
16 12x index push up (INDEXPUSHUP)
17 6x index push down (INDEXPUSHDOWN)
18 1x zoom in (ZOOMIN)
19 26x zoom out (ZOOMOUT)
20 5x zoom reset (ZOOMRESET)
21 0x toggle quick zoom (QUICKZOOMTOGGLE)
22 0x purposeful rotation (PURPOSEFULROTATION)
23 0x smooth zooming (SMOOTHZOOMING)
24

25 ∗∗∗ STATISTICS @ Mon Sep 19 10:03:32 CEST 2005 (= 1127117012734 msec)
26 WildDocs version compile time: Mon Sep 19 08:19:33 CEST 2005
27 WildDocs instance (hash code): 2161283
28 Active window title : WD | v4 [fs]
29 56 low level docs on screen
30 5185 px area width of low level doc
31 3624 px area height of low level doc
32 1371 mm area width of low level doc
33 958 mm area height of low level doc
34 164x straighten stack (STRAIGHTENSTACK)
35 2x select node below cursor (SELECTNODESBELOWCURSOR)
36 2x move selected nodes (MOVESELECTEDNODES)
37 0x side push left (SIDEPUSHLEFT)
38 4x side push right (SIDEPUSHRIGHT)
39 17x index push up (INDEXPUSHUP)
40 118x index push down (INDEXPUSHDOWN)
41 6x zoom in (ZOOMIN)
42 34x zoom out (ZOOMOUT)
43 6x zoom reset (ZOOMRESET)
44 0x toggle quick zoom (QUICKZOOMTOGGLE)
45 0x purposeful rotation (PURPOSEFULROTATION)
46 0x smooth zooming (SMOOTHZOOMING)

236

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 237 — #239 i
i

i
i

i
i

Appendix C.

Acknowledgements

I would like to thank my family, to whom I dedicate this thesis. Thank you for your support,
especially through the time of heavy research with long working hours. Thank you, Chris-
tiane, Janik, and Noah. I also would like to thank my Mother and Father, who gave me the
freedom early on in choosing my way without trying to push me into a certain direction. This
freedom was a prerequisite for finding my place as an academic, which I highly enjoy. Sadly,
my Father died before he saw me finishing this thesis. I will remember him.

My advisor was Uffe K. Wiil, before he followed a call of another university. Thank you,
Uffe, for giving me the opportunity to continue my path as a research scientist. Peter J.
Nürnberg agreed to become my new advisor. Pete, I appreciate that you decided to advise me
in my work, introduced me to the research community, and supported me in various specialist
and organizational questions. I enjoyed working with you very much.

Forty-five volunteers tested my application WildDocs. They were promised anonymity;
therefore, I cannot mention them here by name. I would like to thank them for their willing-
ness to support my research, also those who participated in pre-testing WildDocs.

The following people supported my work with ideas, discussions, or other help. I would
like to thank them, plus many others in the research community.

Alexander Wagner
Anders Schmidt Kristensen
Anton J. Atzenbeck
Bernd Raichle
Britta Jensen
David L. Hicks
Diana F. Hansen
Dil Muhammad Akbar Hussain
Frank M. Shipman
Fredrik H. Madsen
Giorgos Gkotsis
Jamie Blustein
Keith Andrews
Kim C. Kristoffersen
Kim H. Esbensen

Kumiyo Nakakoji
Manolis M. Tzagarakis
Mark Bernstein
Markus Kohm
Michael Rosenørn
Nasrullah Memon
Peter J. Nürnberg
Siegfried Reich
Steffen Podlech
Tanja Keller
Uffe K. Wiil
Ulla Tradsborg
Wade Tregaskis
Wolfgang Kienreich

237

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 238 — #240 i
i

i
i

i
i

Appendix C. Acknowledgements

238

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 239 — #241 i
i

i
i

i
i

Bibliography

Adobe Systems. PDF Reference. Adobe R© Portable Document Format Version 1.6.
Adobe Systems, 5th edn., 2004. URL http://partners.adobe.com/public/developer/en/
pdf/PDFReference16.pdf

A. Agarawala, R. Balakrishnan. Keepin’ it real: pushing the desktop metaphor with physics,
piles and the pen. In: CHI ’06: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. New York, NY, USA: ACM Press, 2006; pp. 1283–1292.
URL http://doi.acm.org/10.1145/1124772.1124965

Apple Computer. About the Sudden Motion Sensor. WWW, 2005a. URL http://docs.info.
apple.com/article.html?artnum=300781, visited on 2006-03-26

Apple Computer. Macintosh OpenGL Programming Guide, 2005b. URL http://developer.
apple.com/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/index.
html, visited on 2006-03-26

Apple Computer. Quartz 2D Programming Guide, 2006. URL http://developer.apple.com/
documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/, visited on 2006-03-
26

M. S. D. Ashdown. Personal projected displays. Tech. Rep. 585, University of
Cambridge Computer Laboratory, 2004. URL http://www.cl.cam.ac.uk/TechReports/
UCAM-CL-TR-585.pdf

C. Atzenbeck. Wild Windows on Mac OS X. WWW, 2005. URL http://www.atzenbeck.de/
research/wildWindows/, visited on 2006-03-26

C. Atzenbeck, P. J. Nürnberg. Approaching structure interoperability. In: Procedings of the
4th International Conference on Knowledge Management (I-KNOW ’04), J.UCS Con-
ference Proceedings. 2004; pp. 269–278. URL http://www.atzenbeck.de/publications/
atzenbeck+04b.pdf

C. Atzenbeck, P. J. Nürnberg. Constraints in spatial structures. In: Proceedings of the 16th
ACM Conference on Hypertext and Hypermedia. ACM Press, 2005a; pp. 63–65. URL
http://doi.acm.org/10.1145/1083356.1083368

C. Atzenbeck, P. J. Nürnberg. Looking beyond computer applications: Investigating rich
structures. In: U. K. Wiil (ed.), Proceedings of the International Metainformatics Sym-
posium 2004, vol. 3511 of Lecture Notes in Computer Science. 2005b; pp. 51–65. URL
http://dx.doi.org/10.1007/11518358_5

C. Atzenbeck, P. J. Nürnberg. WildDocs – emerging metainformation support. In: Pro-
cedings of the 5th International Conference on Knowledge Management (I-KNOW ’05),

239

http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf
http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf
http://doi.acm.org/10.1145/1124772.1124965
http://docs.info.apple.com/article.html?artnum=300781
http://docs.info.apple.com/article.html?artnum=300781
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/index.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/index.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/OpenGL-MacProgGuide/index.html
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/
http://developer.apple.com/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-585.pdf
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-585.pdf
http://www.atzenbeck.de/research/wildWindows/
http://www.atzenbeck.de/research/wildWindows/
http://www.atzenbeck.de/publications/atzenbeck+04b.pdf
http://www.atzenbeck.de/publications/atzenbeck+04b.pdf
http://doi.acm.org/10.1145/1083356.1083368
http://dx.doi.org/10.1007/11518358_5

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 240 — #242 i
i

i
i

i
i

Bibliography

J.UCS Conference Proceedings. 2005c; pp. 286–293. URL http://www.atzenbeck.de/
publications/atzenbeck+05c.pdf

C. Atzenbeck, U. K. Wiil, D. L. Hicks. Toward a structure domain interoperability space. In:
D. L. Hicks (ed.), Proceedings of the International Metainformatics Symposium 2003,
vol. 3002 of Lecture Notes in Computer Science. Springer, 2004; pp. 66–71. URL http:
//www.springerlink.com/link.asp?id=vn0y51tmc9rlbr2h

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre. Recent advances in
augmented reality. IEEE Computer Graphics and Applications 21 (2001) 34–47. URL
http://www.cs.unc.edu/~azuma/cga2001.pdf

M. Beaudouin-Lafon. Novel interaction techniques for overlapping windows. In: Proceed-
ings of the 14th Annual ACM Symposium on User Interface Software and Technology
(UIST ’01). ACM Press, 2001; pp. 153–154. URL http://doi.acm.org/10.1145/502348.
502371

B. B. Bederson, J. Grosjean, J. Meyer. Toolkit design for interactive structured graph-
ics. IEEE Transactions on Software Engineering 30 (2004) 535–546. URL http:
//doi.ieeecomputersociety.org/10.1109/TSE.2004.44

R. Bergman, T. Hastings. The printer working group. Standard for media standardized names.
Tech. Rep. IEEE-ISTO 5101.1-2002, IEEE Industry Standards and Technology Organi-
zation, 2002. URL ftp://ftp.pwg.org/pub/pwg/standards/pwg5101.1.pdf

M. Bernstein. Patterns of hypertext. In: Proceedings of the 9th ACM Conference on Hyper-
text and Hypermedia. ACM Press, 1998; pp. 21–29. URL http://doi.acm.org/10.1145/
276627.276630

M. Bernstein. Collage, composites, construction. In: Proceedings of the 14th ACM
Conference on Hypertext and Hypermedia. ACM Press, 2003; pp. 122–123. URL
http://doi.acm.org/10.1145/900051.900077

N. Brügger. Internet: Medium and text. In: Proceedings of the 15th Nordic Conference on
Media and Communication Research. 2001; p. unknown

V. Bush. As we may think. The Atlantic Monthly 176 (1945) 101–108. URL http://www.
theatlantic.com/unbound/flashbks/computer/bushf.htm

S. K. Card, L. Hong, J. D. Mackinlay, E. H. Chi. 3Book: a 3D electronic smart book. In:
Proceedings of the Working Conference on Advanced Visual Interfaces. ACM Press,
2004a; pp. 303–307. URL http://doi.acm.org/10.1145/989863.989915

S. K. Card, L. Hong, J. D. Mackinlay, E. H. Chi. 3Book: a scalable 3D virtual book. In:
Extended Abstracts of the 2004 Conference on Human Factors and Computing Systems.
ACM Press, 2004b; pp. 1095–1098. URL http://doi.acm.org/10.1145/985921.985997

Y.-C. Chu, D. Bainbridge, M. Jones, I. H. Witten. Realistic books: a bizarre homage to an
obsolete medium? In: Proceedings of the 4th Joint ACM/IEEE Conference on Digital Li-
braries. ACM Press, 2004; pp. 78–86. URL http://doi.acm.org/10.1145/996350.996372

240

http://www.atzenbeck.de/publications/atzenbeck+05c.pdf
http://www.atzenbeck.de/publications/atzenbeck+05c.pdf
http://www.springerlink.com/link.asp?id=vn0y51tmc9rlbr2h
http://www.springerlink.com/link.asp?id=vn0y51tmc9rlbr2h
http://www.cs.unc.edu/~azuma/cga2001.pdf
http://doi.acm.org/10.1145/502348.502371
http://doi.acm.org/10.1145/502348.502371
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.44
http://doi.ieeecomputersociety.org/10.1109/TSE.2004.44
ftp://ftp.pwg.org/pub/pwg/standards/pwg5101.1.pdf
http://doi.acm.org/10.1145/276627.276630
http://doi.acm.org/10.1145/276627.276630
http://doi.acm.org/10.1145/900051.900077
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
http://doi.acm.org/10.1145/989863.989915
http://doi.acm.org/10.1145/985921.985997
http://doi.acm.org/10.1145/996350.996372

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 241 — #243 i
i

i
i

i
i

Bibliography

Y.-C. Chu, I. H. Witten, R. Lobb, D. Bainbridge. How to turn the page. In: Proceedings
of the 3rd Joint ACM/IEEE Conference on Digital Libraries. IEEE Computer Society,
2003; pp. 186–188. URL http://www.nzdl.org/html/open_the_book/p186-chu.pdf

A. Cockburn. Revisiting 2D vs 3D implications on spatial memory. In: Proceedings of the 5th
Conference on Australasian User Interface (CRPIT ’04). Australian Computer Society,
Inc., 2004; pp. 25–31. URL http://doi.acm.org/976314

J. Cohen. A power primer. Psychological Bulletin 112 (1992) 155–159. URL http://content.
apa.org/journals/bul/112/1/155

I. Cole. Human aspects of office filing: Implications for the electronic office. In: Proceedings
of the 26th Annual Meeting of the Human Factors Society. 1982; pp. 59–63

T. T. A. Combs, B. B. Bederson. Does zooming improve image browsing? In: Proceedings
of the 4th ACM International Conference on Digital Libraries. ACM Press, 1999; pp.
130–137. URL http://doi.acm.org/10.1145/313238.313286

J. Conklin, M. L. Begeman. gIBIS: a hypertext tool for team design deliberation. In: Pro-
ceeding of the ACM Conference on Hypertext. ACM Press, 1987; pp. 247–251. URL
http://doi.acm.org/10.1145/317426.317444

J. Conklin, M. L. Begeman. gIBIS: a hypertext tool for exploratory policy discussion. In:
Proceedings of the 1988 ACM Conference on Computer-Supported Cooperative Work.
ACM Press, 1988; pp. 140–152. URL http://doi.acm.org/10.1145/62266.62278

R.-A. de Beaugrande, W. Dressler. Introduction to Text Linguistics. Addison-Wesley, 1981

D. C. De Roure, D. G. Cruickshank, D. T. Michaelides, K. R. Page, M. J. Weal. On hy-
perstructure and musical structure. In: Proceedings of the 13th Conference on Hyper-
text and Hypermedia. ACM Press, 2002; pp. 95–104. URL http://doi.acm.org/10.1145/
513338.513366

P. Dragicevic. Combining crossing-based and paper-based interaction paradigms for drag-
ging and dropping between overlapping windows. In: Proceedings of the 17th Annual
ACM Symposium on User Interface Software and Technology (UIST ’04). ACM Press,
2004; pp. 193–196. URL http://doi.acm.org/10.1145/1029632.1029667

A. D. Dunn. Notes on the standardization of paper sizes. Dunn, 1972. URL http://www.cl.
cam.ac.uk/~mgk25/volatile/dunn-papersizes.pdf

Eastgate Systems. TinderboxTM for Macintosh v. 2.2. User’s Manual & Reference, 2004. URL
http://www.eastgate.com/Tinderbox/

EDS Inc. Guide to international paper sizes. Concise tables of measurements. WWW, 1997.
URL http://home.inter.net/eds/paper/papersize.html, last updated 2004-01-15

D. C. Engelbart. Augmenting human intellect: A conceptual framework. Summary Re-
port AFOSR-3233, Standford Research Institute, 1962. URL http://www.bootstrap.org/
augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html

241

http://www.nzdl.org/html/open_the_book/p186-chu.pdf
http://doi.acm.org/976314
http://content.apa.org/journals/bul/112/1/155
http://content.apa.org/journals/bul/112/1/155
http://doi.acm.org/10.1145/313238.313286
http://doi.acm.org/10.1145/317426.317444
http://doi.acm.org/10.1145/62266.62278
http://doi.acm.org/10.1145/513338.513366
http://doi.acm.org/10.1145/513338.513366
http://doi.acm.org/10.1145/1029632.1029667
http://www.cl.cam.ac.uk/~mgk25/volatile/dunn-papersizes.pdf
http://www.cl.cam.ac.uk/~mgk25/volatile/dunn-papersizes.pdf
http://www.eastgate.com/Tinderbox/
http://home.inter.net/eds/paper/papersize.html
http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html
http://www.bootstrap.org/augdocs/friedewald030402/augmentinghumanintellect/ahi62index.html

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 242 — #244 i
i

i
i

i
i

Bibliography

D. C. Engelbart. Collaboration support provisions in AUGMENT . In: Proceedings of the
AFIPS Office Automation Conference (OAC ’84). 1984; pp. 51–58. URL http://www.
bootstrap.org/augdocs/oad-2221.htm

FEPS Ethics Committee. Code of Practice for Research Involving Human Participants.
University of Dundee, 2005. URL http://www.computing.dundee.ac.uk/staff/awaller/
fepsethics/Code_of_Practice_2005.pdf, edition 2005-07-22

A. Field, G. Hole. How to Design and Report Experiments. Sage Publications, 2003.
Reprinted 2004

L. Francisco-Revilla, F. Shipman. Parsing and interpreting ambiguous structures in spatial
hypermedia. In: Proceedings of the 16th ACM Conference on Hypertext and Hyperme-
dia. ACM Press, 2005; pp. 107–116. URL http://doi.acm.org/10.1145/1083356.1083376

D. Frohlich, M. Perry. The paperful office paradox. Tech. Rep. HPL-94-20, Hewlett-Packard
Laboratories, 1994. URL http://www.hpl.hp.com/techreports/94/HPL-94-20.html

G. W. Furnas. Generalized fisheye views. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’86). ACM Press, 1986; pp. 16–23. URL
http://doi.acm.org/10.1145/22627.22342

L. N. Garrett, K. E. Smith, N. Meyrowitz. Intermedia: Issues, strategies, and tactics in the
design of a hypermedia document system. In: Proceedings of the 1986 ACM Conference
on Computer Supported Cooperative Work (CSCW ’86). ACM Press, 1986; pp. 163–174.
URL http://doi.acm.org/10.1145/637069.637090

D. Gentner, J. Nielsen. The Anti-Mac interface. Communications of the ACM 39 (1996)
70–82. URL http://doi.acm.org/10.1145/232014.232032

L. Good, B. B. Bederson. Zoomable user interfaces as a medium for slide show presentations.
Information Visualization 1 (2002) 35–49. URL http://dx.doi.org/10.1057/palgrave/ivs/
9500004

H. P. Grice. Logic and conversation. In: P. Cole, J. L. Morgan (eds.), Speech Acts, vol. 3, pp.
41–58. Academic Press, 1975;

K. Grønbæk, J. F. Kristensen, P. Ørbæk, M. A. Eriksen. “Physical hypermedia”: Organising
collections of mixed physical and digital material. In: Proceedings of the 14th ACM
Conference on Hypertext and Hypermedia. ACM Press, 2003; pp. 10–19. URL http:
//doi.acm.org/10.1145/900051.900056

K. Grønbæk, R. H. Trigg. Design issues for a Dexter-based hypermedia system. Communi-
cations of the ACM 37 (1994) 40–49. URL http://doi.acm.org/10.1145/175235.175238

K. Grønbæk, P. P. Vestergaard, P. Ørbæk. Towards geo-spatial hypermedia: Concepts and
prototype implementation. In: Proceedings of the 13th Conference on Hypertext and
Hypermedia. ACM Press, 2002; pp. 117–126. URL http://doi.acm.org/10.1145/513338.
513370

242

http://www.bootstrap.org/augdocs/oad-2221.htm
http://www.bootstrap.org/augdocs/oad-2221.htm
http://www.computing.dundee.ac.uk/staff/awaller/fepsethics/Code_of_Practice_2005.pdf
http://www.computing.dundee.ac.uk/staff/awaller/fepsethics/Code_of_Practice_2005.pdf
http://doi.acm.org/10.1145/1083356.1083376
http://www.hpl.hp.com/techreports/94/HPL-94-20.html
http://doi.acm.org/10.1145/22627.22342
http://doi.acm.org/10.1145/637069.637090
http://doi.acm.org/10.1145/232014.232032
http://dx.doi.org/10.1057/palgrave/ivs/9500004
http://dx.doi.org/10.1057/palgrave/ivs/9500004
http://doi.acm.org/10.1145/900051.900056
http://doi.acm.org/10.1145/900051.900056
http://doi.acm.org/10.1145/175235.175238
http://doi.acm.org/10.1145/513338.513370
http://doi.acm.org/10.1145/513338.513370

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 243 — #245 i
i

i
i

i
i

Bibliography

K. Gupton, F. Shipman. Visual Knowledge Builder version 0.70. The user’s manual. Center
for the Study of Digital Libraries, Texas A&M University, 2000. URL http://www.csdl.
tamu.edu/VKB/Download/VKBManual.PDF

F. Halasz, T. P. Moran. Analogy considered harmful. In: Proceedings of the Conference
on Human Factors in Computing Systems. ACM Press, 1982; pp. 383–386. URL http:
//doi.acm.org/10.1145/800049.801816

F. Halasz, M. Schwartz. The Dexter hypertext reference model. Communications of the ACM
37 (1994) 30–39. URL http://doi.acm.org/10.1145/175235.175237

F. G. Halasz. Reflections on NoteCards: Seven issues for the next generation of hypermedia
systems. In: Proceeding of the ACM Conference on Hypertext. ACM Press, 1987; pp.
345–365. URL http://doi.acm.org/10.1145/317426.317451

F. G. Halasz, T. P. Moran, R. H. Trigg. NoteCards in a nutshell. In: Proceedings of the
SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Inter-
face (CHI ’87). ACM Press, 1987; pp. 45–52. URL http://doi.acm.org/10.1145/29933.
30859

R. Hammwöhner. Offene Hypertextsysteme. Das Konstanzer Hypertextsystem (KHS) im
wissenschaftlichen und technischen Kontext, vol. 32 of Schriften zur Informationswis-
senschaft. Universitätsverlag Konstanz, 1997

R. Hobbs. Mark Lombardi. Global Networks. Independent Curators International, 2003

A. Hoeben, P. J. Stappers. Flicking through page-based documents with thumbnail sliders
and electronic dog-ears. In: CHI ’00 Extended Abstracts on Human Factors in Comput-
ing Systems. ACM Press, 2000; pp. 191–192. URL http://doi.acm.org/10.1145/633292.
633397

K. Hornbæk, B. B. Bederson, C. Plaisant. Navigation patterns and usability of zoomable
user interfaces with and without an overview. ACM Transactions on Computer-Human
Interaction (TOCHI) 9 (2002) 362–389. URL http://doi.acm.org/10.1145/586081.586086

W. Johnson, H. Jellinek, L. Klotz, R. Rao, S. K. Card. Bridging the paper and electronic
worlds: the paper user interface. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’93). ACM Press, 1993; pp. 507–512. URL http:
//doi.acm.org/10.1145/169059.169445

H. Kawahara, P. Byrne, D. Johnson. Project Looking Glass. API Design
Overview (Draft), 2004. URL https://lg3d-core.dev.java.net/files/documents/1834/7596/
LG3DAPIOverview-DRAFT.pdf

F. Khan. A survey of note-taking practices. Tech. Rep. HPL-93-107, Hewlett-Packard Labo-
ratories, 1994. URL http://www.hpl.hp.com/techreports/93/HPL-93-107.html

A. Khella, B. B. Bederson. Pocket PhotoMesa: a zoomable image browser for PDAs. In:
Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia
(MUM ’04). ACM Press, 2004; pp. 19–24. URL http://doi.acm.org/10.1145/1052380.
1052384

243

http://www.csdl.tamu.edu/VKB/Download/VKBManual.PDF
http://www.csdl.tamu.edu/VKB/Download/VKBManual.PDF
http://doi.acm.org/10.1145/800049.801816
http://doi.acm.org/10.1145/800049.801816
http://doi.acm.org/10.1145/175235.175237
http://doi.acm.org/10.1145/317426.317451
http://doi.acm.org/10.1145/29933.30859
http://doi.acm.org/10.1145/29933.30859
http://doi.acm.org/10.1145/633292.633397
http://doi.acm.org/10.1145/633292.633397
http://doi.acm.org/10.1145/586081.586086
http://doi.acm.org/10.1145/169059.169445
http://doi.acm.org/10.1145/169059.169445
https://lg3d-core.dev.java.net/files/documents/1834/7596/LG3DAPIOverview-DRAFT.pdf
https://lg3d-core.dev.java.net/files/documents/1834/7596/LG3DAPIOverview-DRAFT.pdf
http://www.hpl.hp.com/techreports/93/HPL-93-107.html
http://doi.acm.org/10.1145/1052380.1052384
http://doi.acm.org/10.1145/1052380.1052384

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 244 — #246 i
i

i
i

i
i

Bibliography

A. Kidd. The marks are on the knowledge worker. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM Press, 1994; pp. 186–191. URL http:
//doi.acm.org/10.1145/191666.191740

J. Kim, S. M. Seitz, M. Agrawala. The office of the past: Document discovery and tracking
from video. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop
(CVPRW ’04). 2004a; pp. 157–157. URL http://dx.doi.org/10.1109/CVPR.2004.461

J. Kim, S. M. Seitz, M. Agrawala. Video-based document tracking: Unifying your physical
and electronic desktops. In: Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology (UIST ’04). ACM Press, 2004b; pp. 99–107. URL
http://doi.acm.org/10.1145/1029632.1029650

J. Kim, S. M. Seitz, M. Agrawala. Video-based document tracking: Unifying your physi-
cal and electronic desktops (demonstration movie). WWW, 2004c. URL http://grail.cs.
washington.edu/projects/office/doc/kim04unifying_video_divx52.avi, in combination with
Kim et al. (2004b); visited on 2006-03-27

J. C. King. A format design case study: PDF. In: Proceedings of the 15th ACM Conference
on Hypertext and hypermedia. ACM Press, 2004; pp. 95–97. URL http://doi.acm.org/10.
1145/1012807.1012810

M. Kuhn. International standard paper sizes. WWW, 1996. URL http://www.cl.cam.ac.uk/
~mgk25/iso-paper.html, visited on 2006-03-12

J. Lamping, R. Rao, P. Pirolli. A focus+context technique based on hyperbolic geometry for
visualizing large hierarchies. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’95). ACM Press/Addison-Wesley, 1995; pp. 401–
408. URL http://doi.acm.org/10.1145/223904.223956

M. Lansdale. The psychology of personal information management. Applied Ergonomics 19
(1988) 55–66. URL http://dx.doi.org/10.1016/0003-6870(88)90199-8

J. P. Lewis, R. Rosenholtz, N. Fong, U. Neumann. VisualIDs: automatic distinctive icons
for desktop interfaces. ACM Transactions on Graphics 23 (2004) 416–423. URL http:
//doi.acm.org/10.1145/1015706.1015739

M. Lombardi. The recent drawings: an overview (artist statement). WWW, 1997. URL
http://www.pierogi2000.com/flatfile/lombardidrawingshow.html, visited on 2006-04-06

T. W. Malone. How do people organize their desks? Implications for the design of office
information systems. ACM Transactions on Information Systems (TOIS) 1 (1983) 99–
112. URL http://doi.acm.org/10.1145/357423.357430

R. Mander, D. E. Rose, G. Salomon, Y. Y. Wong, T. Oren, S. Booker, S. Houde. Method and
apparatus for organizing information in a computer system. United States Patent US
6,243,724 B1, Apple Computer, 1994. URL http://patft.uspto.gov/netacgi/nph-Parser?
patentnumber=6243724, date of Patent 2001-06-05

244

http://doi.acm.org/10.1145/191666.191740
http://doi.acm.org/10.1145/191666.191740
http://dx.doi.org/10.1109/CVPR.2004.461
http://doi.acm.org/10.1145/1029632.1029650
http://grail.cs.washington.edu/projects/office/doc/kim04unifying_video_divx52.avi
http://grail.cs.washington.edu/projects/office/doc/kim04unifying_video_divx52.avi
http://doi.acm.org/10.1145/1012807.1012810
http://doi.acm.org/10.1145/1012807.1012810
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html
http://doi.acm.org/10.1145/223904.223956
http://dx.doi.org/10.1016/0003-6870(88)90199-8
http://doi.acm.org/10.1145/1015706.1015739
http://doi.acm.org/10.1145/1015706.1015739
http://www.pierogi2000.com/flatfile/lombardidrawingshow.html
http://doi.acm.org/10.1145/357423.357430
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6243724
http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=6243724

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 245 — #247 i
i

i
i

i
i

Bibliography

R. Mander, G. Salomon, Y. Y. Wong. A ‘pile’ metaphor for supporting casual organization of
information. In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. ACM Press, 1992; pp. 627–634. URL http://doi.acm.org/10.1145/142750.
143055

C. C. Marshall. Annotation: From paper books to the digital library. In: Proceedings of the
2nd ACM International Conference on Digital Libraries. ACM Press, 1997; pp. 131–
140. URL http://doi.acm.org/10.1145/263690.263806

C. C. Marshall. Toward an ecology of hypertext annotation. In: Proceedings of the 9th
ACM Conference on Hypertext and Hypermedia. ACM Press, 1998; pp. 40–49. URL
http://doi.acm.org/10.1145/276627.276632

C. C. Marshall, F. G. Halasz, R. A. Rogers, W. C. Janssen. Aquanet: a hypertext tool to
hold your knowledge in place. In: Proceedings of the 3rd Annual ACM Conference on
Hypertext. ACM Press, 1991; pp. 261–275. URL http://doi.acm.org/10.1145/122974.
123000

C. C. Marshall, F. M. Shipman, J. H. Coombs. VIKI: Spatial hypertext supporting emergent
structure. In: Proceedings of the 1994 ACM European Conference on Hypermedia Tech-
nology. ACM Press, 1994; pp. 13–23. URL http://doi.acm.org/10.1145/192757.192759

N. Matsushita, Y. Ayatsuka, J. Rekimoto. Dual touch: a two-handed interface for pen-based
PDAs. In: Proceedings of the 13th Annual ACM Symposium on User Interface Soft-
ware and Technology. ACM Press, 2000; pp. 211–212. URL http://doi.acm.org/10.1145/
354401.354774

P. Mogensen, K. Grønbæk. Hypermedia in the virtual project room – toward open 3D spatial
hypermedia. In: Proceedings of the 11th ACM Conference on Hypertext and Hyperme-
dia. ACM Press, 2000; pp. 113–122. URL http://doi.acm.org/10.1145/336296.336340

T. H. Nelson. Complex information processing: a file structure for the complex, the changing
and the indeterminate. In: Proceedings of the 20th National Conference. ACM Press,
1965; pp. 84–100. URL http://doi.acm.org/800197.806036

P. J. Nürnberg, K. C. Kristoffersen, U. K. Wiil, D. L. Hicks. EAD revisited: First experiences,
2005. Proceedings of the International Metainformatics Symposium 2005 (in press)

P. J. Nürnberg, J. J. Leggett, E. R. Schneider. As we should have thought. In: Proceedings
of the 8th ACM Conference on Hypertext. ACM Press, 1997; pp. 96–101. URL http:
//doi.acm.org/10.1145/267437.267448

P. J. Nürnberg, U. K. Wiil, D. L. Hicks. A grand unified theory for structural computing. In:
D. L. Hicks (ed.), Proceedings of the International Metainformatics Symposium 2003,
vol. 3002 of Lecture Notes in Computer Science. Springer, 2004a; pp. 1–16. URL http:
//www.springerlink.com/link.asp?id=rqtq28uakc9l0ler

P. J. Nürnberg, U. K. Wiil, D. L. Hicks. Rethinking structural computing infrastructures. In:
Proceedings of the 15th ACM Conference on Hypertext and Hypermedia. ACM Press,
2004b; pp. 239–246. URL http://doi.acm.org/10.1145/1012807.1012868

245

http://doi.acm.org/10.1145/142750.143055
http://doi.acm.org/10.1145/142750.143055
http://doi.acm.org/10.1145/263690.263806
http://doi.acm.org/10.1145/276627.276632
http://doi.acm.org/10.1145/122974.123000
http://doi.acm.org/10.1145/122974.123000
http://doi.acm.org/10.1145/192757.192759
http://doi.acm.org/10.1145/354401.354774
http://doi.acm.org/10.1145/354401.354774
http://doi.acm.org/10.1145/336296.336340
http://doi.acm.org/800197.806036
http://doi.acm.org/10.1145/267437.267448
http://doi.acm.org/10.1145/267437.267448
http://www.springerlink.com/link.asp?id=rqtq28uakc9l0ler
http://www.springerlink.com/link.asp?id=rqtq28uakc9l0ler
http://doi.acm.org/10.1145/1012807.1012868

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 246 — #248 i
i

i
i

i
i

Bibliography

Omni Group. OmniGraffle 4, 2005. URL http://www.omnigroup.com/ftp/pub/software/
MacOSX/Manuals/OmniGraffle-4-Manual.pdf, visited on 2006-03-12

H. V. D. Parunak. Don’t link me in: Set based hypermedia for taxonomic reasoning. In:
Proceedings of the 3rd Annual ACM Conference on Hypertext. ACM Press, 1991; pp.
233–242. URL http://doi.acm.org/10.1145/122974.122998

K. Popper, V. Friedrich, W. Hochkeppel, T. Rotstein. Kritik und Vernunft. Von der Unendlich-
keit des Nichtwissens. Reden und Gespräche. Der Hörverlag, 2001. 5 Audio CDs

W. Porstmann. Das metrische Formatsystem. Mitteilungen des Normenausschusses der
Deutschen Industrie (1918) 200–202, 226–228. URL http://www.cl.cam.ac.uk/~mgk25/
volatile/DIN-A4-origins.pdf

D. Raggett, A. Le Hors, I. Jacobs (eds.). HTML 4.01 Specification. W3C, 1999. URL http:
//www.w3.org/TR/1999/REC-html401-19991224/, W3C Recommendation 1999-12-24

Raskin Center. Archy in the future. WWW, 2006. URL http://rchi.raskincenter.org/index.php?
title=Archy_in_the_Future, visited on 2006-03-26

RealVNC Ltd. VNC Free Edition 4.1, 2005. URL http://www.realvnc.com/products/free/4.1/,
visited on 2006-03-12

J. Rekimoto. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM Press, 2002; pp. 113–120. URL http://doi.acm.org/10.1145/503376.503397

G. Robertson, M. van Dantzich, D. Robbins, M. Czerwinski, K. Hinckley, K. Risden,
D. Thiel, V. Gorokhovsky. The Task Gallery: a 3D window manager. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press,
2000; pp. 494–501. URL http://doi.acm.org/10.1145/332040.332482

D. E. Rose, R. Mander, T. Oren, D. B. Poncéleon, G. Salomon, Y. Y. Wong. Content aware-
ness in a file system interface: Implementing the “pile” metaphor for organizing infor-
mation. In: Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM Press, 1993; pp. 260–269.
URL http://doi.acm.org/10.1145/160688.160735

P. Russo, S. Boor. How fluent is your interface? Designing for international users. In: Pro-
ceedings of the Conference on Human Factors in Computing Systems. Addison-Wesley
Longman, 1993; pp. 342–347. URL http://doi.acm.org/304459.304713

F. Shipman, R. Airhart, H. Hsieh, P. Maloor, J. M. Moore, D. Shah. Visual and spatial commu-
nication and task organization using the Visual Knowledge Builder. In: Proceedings of
the 2001 International ACM SIGGROUP Conference on Supporting Group Work. ACM
Press, 2001a; pp. 260–269. URL http://doi.acm.org/10.1145/500286.500325

F. Shipman, J. M. Moore, P. Maloor, H. Hsieh, R. Akkapeddi. Semantics happen: Knowledge
building in spatial hypertext. In: Proceedings of the 13th Conference on Hypertext and
Hypermedia. ACM Press, 2002; pp. 25–34. URL http://doi.acm.org/10.1145/513338.
513350

246

http://www.omnigroup.com/ftp/pub/software/MacOSX/Manuals/OmniGraffle-4-Manual.pdf
http://www.omnigroup.com/ftp/pub/software/MacOSX/Manuals/OmniGraffle-4-Manual.pdf
http://doi.acm.org/10.1145/122974.122998
http://www.cl.cam.ac.uk/~mgk25/volatile/DIN-A4-origins.pdf
http://www.cl.cam.ac.uk/~mgk25/volatile/DIN-A4-origins.pdf
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://rchi.raskincenter.org/index.php?title=Archy_in_the_Future
http://rchi.raskincenter.org/index.php?title=Archy_in_the_Future
http://www.realvnc.com/products/free/4.1/
http://doi.acm.org/10.1145/503376.503397
http://doi.acm.org/10.1145/332040.332482
http://doi.acm.org/10.1145/160688.160735
http://doi.acm.org/304459.304713
http://doi.acm.org/10.1145/500286.500325
http://doi.acm.org/10.1145/513338.513350
http://doi.acm.org/10.1145/513338.513350

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 247 — #249 i
i

i
i

i
i

Bibliography

F. M. Shipman. Seven directions for spatial hypertext research. In: 1st International
Workshop on Spatial Hypertext in Conjunction with the 12th ACM Conference on
Hypertext and Hypermedia. 2001; p. n/a. URL http://www.csdl.tamu.edu/~shipman/
SpatialHypertext/SH1/shipman.pdf

F. M. Shipman, H. Hsieh, P. Maloor, J. M. Moore. The Visual Knowledge Builder: a second
generation spatial hypertext. In: Proceedings of the 12th ACM Conference on Hypertext
and Hypermedia. ACM Press, 2001b; pp. 113–122. URL http://doi.acm.org/10.1145/
504216.504245

F. M. Shipman, C. C. Marshall. Spatial hypertext: an alternative to navigational and semantic
links. ACM Computing Surveys 31 (1999). URL http://doi.acm.org/10.1145/345966.
346001

F. M. Shipman, C. C. Marshall, M. LeMere. Beyond location: Hypertext workspaces and
non-linear views. In: Proceedings of the 10th ACM Conference on Hypertext and Hyper-
media. ACM Press, 1999; pp. 121–130. URL http://doi.acm.org/10.1145/294469.294498

F. M. Shipman, C. C. Marshall, T. P. Moran. Finding and using implicit structure in human-
organized spatial layouts of information. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM Press/Addison-Wesley, 1995; pp. 346–353.
URL http://doi.acm.org/223904.223949

B. Shneiderman. User interface design for the Hyperties electronic encyclopedia (panel ses-
sion). In: Proceeding of the ACM conference on Hypertext. ACM Press, 1987; pp.
189–194. URL http://doi.acm.org/10.1145/317426.317441

A. Singh. The PowerBook Sudden Motion Sensor. WWW, 2005. URL http://www.
kernelthread.com/software/ams/ams.html, visited on 2006-03-26

T. Smith, S. Bernhardt. Expectations and experiences with HyperCard: a pilot study. In:
Proceedings of the 6th Annual International Conference on Systems Documentation
(SIGDOC ’88). ACM Press, 1988; pp. 47–56. URL http://doi.acm.org/10.1145/358922.
358931

U. Springfeld. Gescheit, gescheiter, gescheitert. Wie lernt der Mensch? SWF2 Radio, 2004.
URL http://www.swr.de/swr2/sendungen/radioakademie/wer-weiss-was/themen/thema3/
index.html, broadcasted on 2004-08-11 (first broadcast on 2003-05-17)

N. Streitz, T. Prante, C. Müller-Tomfelde, P. Tandler, C. Magerkurth. Roomware R©: the sec-
ond generation. In: CHI ’02 Extended Abstracts on Human Factors in Computing Sys-
tems. ACM Press, 2002a; pp. 506–507. URL http://doi.acm.org/10.1145/506443.506452

N. Streitz, T. Prante, C. Müller-Tomfelde, P. Tandler, C. Magerkurth. Roomware R©: the
second generation (demonstration movie). WWW, 2002b. URL http://ipsi.fraunhofer.
de/ambiente/paper/2002/Roomware-ubicomp02.avi, in combination with Streitz et al.
(2002a); visited on 2006-03-26

M. Toyoda, E. Shibayama. HishiMochi: a zooming browser for hierarchically clustered
documents. In: CHI ’00 Extended Abstracts on Human Factors in Computing Systems.
ACM Press, 2000; pp. 28–29. URL http://doi.acm.org/10.1145/633292.633312

247

http://www.csdl.tamu.edu/~shipman/SpatialHypertext/SH1/shipman.pdf
http://www.csdl.tamu.edu/~shipman/SpatialHypertext/SH1/shipman.pdf
http://doi.acm.org/10.1145/504216.504245
http://doi.acm.org/10.1145/504216.504245
http://doi.acm.org/10.1145/345966.346001
http://doi.acm.org/10.1145/345966.346001
http://doi.acm.org/10.1145/294469.294498
http://doi.acm.org/223904.223949
http://doi.acm.org/10.1145/317426.317441
http://www.kernelthread.com/software/ams/ams.html
http://www.kernelthread.com/software/ams/ams.html
http://doi.acm.org/10.1145/358922.358931
http://doi.acm.org/10.1145/358922.358931
http://www.swr.de/swr2/sendungen/radioakademie/wer-weiss-was/themen/thema3/index.html
http://www.swr.de/swr2/sendungen/radioakademie/wer-weiss-was/themen/thema3/index.html
http://doi.acm.org/10.1145/506443.506452
http://ipsi.fraunhofer.de/ambiente/paper/2002/Roomware-ubicomp02.avi
http://ipsi.fraunhofer.de/ambiente/paper/2002/Roomware-ubicomp02.avi
http://doi.acm.org/10.1145/633292.633312

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 248 — #250 i
i

i
i

i
i

Bibliography

D. Tsichritzis. Form management. Communications of the ACM 25 (1982) 453–478. URL
http://doi.acm.org/10.1145/358557.358578

M. Tzagarakis, D. Avramidis, M. Kyriakopoulou, M. M. C. Schraefel, M. Vaitis,
D. Christodoulakis. Structuring primitives in the Callimachus component-based open
hypermedia system. Journal of Network and Computer Applications 26 (2003) 139–
162. URL http://dx.doi.org/10.1016/S1084-8045(02)00064-4

M. Tzagarakis, N. Karousos, D. Christodoulakis, S. Reich. Naming as a fundamental concept
of open hypermedia systems. In: Proceedings of the 11th ACM Conference on Hyper-
text and Hypermedia. ACM Press, 2000; pp. 103–112. URL http://doi.acm.org/10.1145/
336296.336338

M. Tzagarakis, M. Vaitis, A. Papadopoulos, D. Christodoulakis. The Callimachus approach to
distributed hypermedia. In: Proceedings of the 10th ACM Conference on Hypertext and
Hypermedia. ACM Press, 1999; pp. 47–48. URL http://doi.acm.org/10.1145/294469.
294482

United Nations. Universal declaration of human rights. Resolution 217 a (iii), United Na-
tions, 1948. URL http://www.unhchr.ch/udhr/lang/eng.htm

M. van Dantzich, V. Gorokhovsky, G. Robertson. Application redirection: Hosting Windows
applications in 3D. In: Proceedings of the 1999 Workshop on New Paradigms in Infor-
mation Visualization and Manipulation in Conjunction with the 8th ACM International
Conference on Information and Knowledge Management. ACM Press, 1999; pp. 87–91.
URL http://doi.acm.org/10.1145/331770.331791

W. Wang, A. Fernández. A graphical user interface integrating features from different hy-
pertext domains. In: S. Reich, M. M. Tzagarakis, P. M. E. De Bra (eds.), Hypermedia:
Openness, Structural Awareness, and Adaptivity. International Workshops OHS-7, SC-
3, and AH-3. Springer, 2002; pp. 141–150. URL http://springerlink.metapress.com/link.
asp?id=kw55yxlvqjwknhp1

C. Ware. Information Visualization. Morgan Kaufmann, 2nd edn., 2004

M. J. Weal, G. V. Hughes, D. E. Millard, L. Moreau. Open hypermedia as a naviga-
tional interface to ontological information spaces. In: Proceedings of the 12th ACM
Conference on Hypertext and Hypermedia. ACM Press, 2001a; pp. 227–236. URL
http://doi.acm.org/10.1145/504216.504270

M. J. Weal, D. E. Millard, D. T. Michaelides, D. C. De Roure. Building narrative structures
using context based linking. In: Proceedings of the 12th ACM Conference on Hyper-
text and Hypermedia. ACM Press, 2001b; pp. 37–38. URL http://doi.acm.org/10.1145/
504216.504231

P. Wellner. Interacting with paper on the DigitalDesk. Communications of the ACM 36
(1993) 87–96. URL http://doi.acm.org/10.1145/159544.159630

S. Whittaker, J. Hirschberg. The character, value, and management of personal paper
archives. ACM Transactions on Computer-Human Interaction (TOCHI) 8 (2001) 150–
170. URL http://doi.acm.org/10.1145/376929.376932

248

http://doi.acm.org/10.1145/358557.358578
http://dx.doi.org/10.1016/S1084-8045(02)00064-4
http://doi.acm.org/10.1145/336296.336338
http://doi.acm.org/10.1145/336296.336338
http://doi.acm.org/10.1145/294469.294482
http://doi.acm.org/10.1145/294469.294482
http://www.unhchr.ch/udhr/lang/eng.htm
http://doi.acm.org/10.1145/331770.331791
http://springerlink.metapress.com/link.asp?id=kw55yxlvqjwknhp1
http://springerlink.metapress.com/link.asp?id=kw55yxlvqjwknhp1
http://doi.acm.org/10.1145/504216.504270
http://doi.acm.org/10.1145/504216.504231
http://doi.acm.org/10.1145/504216.504231
http://doi.acm.org/10.1145/159544.159630
http://doi.acm.org/10.1145/376929.376932

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 249 — #251 i
i

i
i

i
i

Bibliography

U. K. Wiil, D. L. Hicks, P. J. Nürnberg. Multiple open services: a new approach to service
provision in open hypermedia systems. In: Proceedings of the 12th ACM Conference on
Hypertext and Hypermedia. ACM Press, 2001; pp. 83–92. URL http://doi.acm.org/10.
1145/504216.504241

U. K. Wiil, P. J. Nürnberg, D. L. Hicks, S. Reich. A development environment for build-
ing component-based open hypermedia systems. In: Proceedings of the 11th ACM
Conference on Hypertext and Hypermedia. ACM Press, 2000; pp. 266–267. URL
http://doi.acm.org/10.1145/336296.336507

Wikipedia. Myst. WWW, 2006a. URL http://de.wikipedia.org/wiki/Myst, visited on 2006-06-
27

Wikipedia. Schloss Schönbrunn. WWW, 2006b. URL http://de.wikipedia.org/wiki/Schloss_
Sch%C3%B6nbrunn, visited on 2006-03-10

Working Party on Facilitation on International Trade Procedures. United Nations layout key
for trade documents. UNECE Recommendation 1 (ECE/TRADE/137, Edition 96.1),
United Nations, 1981. URL http://www.unece.org/cefact/recommendations/rec01/rec01_
ecetrd137.pdf

M. Wu, R. Balakrishnan. Multi-finger and whole hand gestural interaction techniques for
multi-user tabletop displays. In: Proceedings of the 16th Annual ACM Symposium on
User Interface Software and Technology. ACM Press, 2003; pp. 193–202. URL http:
//doi.acm.org/10.1145/964696.964718

Y. Yamamoto, K. Nakakoji, A. Aoki. Spatial hypertext for linear-information authoring: In-
teraction design and system development based on the art design principle. In: Proceed-
ings of the 13th ACM Conference on Hypertext and Hypermedia. ACM Press, 2002a; pp.
35–44. URL http://doi.acm.org/10.1145/513338.513351

Y. Yamamoto, K. Nakakoji, A. Aoki. Visual interaction design for tools to think with:
Interactive systems for designing linear information. In: Proceedings of the Work-
ing Conference on Advanced Visual Interfaces (AVI2002). 2002b; pp. 367–372. URL
http://www.kid.rcast.u-tokyo.ac.jp/~kumiyo/mypapers/AVI2002.pdf

K.-P. Yee. Two-handed interaction on a tablet display. In: Extended Abstracts of the 2004
Conference on Human Factors and Computing Systems. ACM Press, 2004; pp. 1493–
1496. URL http://doi.acm.org/10.1145/985921.986098

249

http://doi.acm.org/10.1145/504216.504241
http://doi.acm.org/10.1145/504216.504241
http://doi.acm.org/10.1145/336296.336507
http://de.wikipedia.org/wiki/Myst
http://de.wikipedia.org/wiki/Schloss_Sch%C3%B6nbrunn
http://de.wikipedia.org/wiki/Schloss_Sch%C3%B6nbrunn
http://www.unece.org/cefact/recommendations/rec01/rec01_ecetrd137.pdf
http://www.unece.org/cefact/recommendations/rec01/rec01_ecetrd137.pdf
http://doi.acm.org/10.1145/964696.964718
http://doi.acm.org/10.1145/964696.964718
http://doi.acm.org/10.1145/513338.513351
http://www.kid.rcast.u-tokyo.ac.jp/~kumiyo/mypapers/AVI2002.pdf
http://doi.acm.org/10.1145/985921.986098

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 250 — #252 i
i

i
i

i
i

Bibliography

250

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 251 — #253 i
i

i
i

i
i

Index

3Book, 49, 50
3D, 62–63
3D window manager, 217

abstraction level, 32
acceptability, 26
ACM Hypertext Conference, 25
action information, 34
active node auto switch, 150–153

problems, 152
adornment, 148
aesthetic, 50, 61–62
agent, 56
aging, 48, 50
alignment, 60–61
annotation, 34, 43, 49
ANOVA, 193, 194, 197, 198, 200, 202
ANSI paper size, 38, 39, 104
anti-aliasing, 59
Apple Computer, Inc., 53, 55, 217
Aquanet, 56
AR, see augmented reality
archive, 37
archive storage, 34
Archy, 217
argumentation structures, 24
AUGMENT, 24
augmented reality, 50, 55

background, 103, 180
Bernstein, Mark, 62, 66
binding clip, 104, 143–144
binding dimension, 44–45
binding mechanism, 141–143, 194

graphical representation, 143
binding types

binder, 40–46, 212
blotting pad, 40, 43, 44, 46
book, 40–46, 123–124

cluster with overlays, 40, 41, 44, 46,
54

code (on objects), 40, 43–46
desk, 122–123
drawer, 40, 41, 44–47
folded document, 40, 43, 44, 46, 53
folder, 40, 41, 44–46
heap, 35, 40, 41, 44–47, 212
horizontally stretched stack, 41
open placed objects, 40, 41, 44, 46,

212
page, 45, 125–127
pull-out, 40, 43, 44, 46
scripture role, 40, 212
sheet, 39, 124–125
stack, 35, 39–41, 43–47, 60, 212
stapled, 40, 44–46
sticky note, 36, 39, 40, 43, 44, 46, 59
stretched stack, 40, 44, 46
transparent sheet, 41
tray, 41, 212
vertically and horizontally stretched

stack, 41
vertically stretched stack, 41
zigzag stack, 40, 43, 44, 46

bindings, 89
complex, 84, 155, 159
containable, 117
dimension, see binding dimension
mechanism, see binding mechanism
primitive, 84, 127–129, 155, 159
thickness, see thickness

bitmap image, 50
Bonferroni, 193–195, 197, 198, 202
bookmarks, 49
border, 150
bounds handle, 88, 149–150, 159–160, 182,

204–205

251

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 252 — #254 i
i

i
i

i
i

Index

brain pixels, 68
Britta, 34
BumpTop, 215
Bush, Vannevar, 24

Callimachus, 219
camera, 79
chart view, 56
classes and interfaces

ActionListener, 153
AdornmentFilter, 80, 167
ArrayList, 143, 151, 169, 170
BindingMechanismFilter, 80
ChildrenFilter, 80
Cloneable, 104
ClusterOnTopFilter, 80, 146
Collections, 170
Comparator, 167, 168
ConcurrentModificationException, 121
DescendentFilter, 80, 102, 167
Document, 110, 111
DocumentFilter, 80
EventAndType, 151
FileChooser, 80, 172
GeneralPath, 129
GridExample, 92
HashSet, 121
Image, 108
InputEvent, 150
IntersectionFilter, 80, 167
JEditorPane, 110
LargerNodeIndexFilter, 80, 167
LowLevelDocFilter, 80
MenuBar, 153
NodeInBetween, 80, 167
NodesOnLayer, 80
ObjectStore, 80, 171
OpenBindingMechanismFilter, 80
PActivity, 96
PActivity.PActivityDelegate, 165
PBasicInputEventHandler, 156
PBounds, 95
PBoundsHandle, 149
PCamera, 79, 100, 152
PCanvas, 84, 150, 151
PComposite, 114
PDimension, 158

PFrame, 81, 86, 91
PImage, 81, 105, 108
PInputEvent, 150
PInputManager, 150, 152
PLayer, 79, 103
PNode, 79, 105, 107, 113, 115, 118,

122, 128, 129, 131, 164, 168
PNodeFilter, 166
PPaintContext, 109
PPanEventHandler, 161
PPath, 81, 104, 111, 112, 115, 127,

129, 134, 136, 173
PPickpath, 100
PrimitiveBindingFilter, 80
PRoot, 79
PScrollDirector, 92
PScrollPane, 92
PStyledText, 81, 110, 111
PText, 81, 105, 108–111
PViewport, 92
PZoomEventHandler, 160
ScrollingExample, 92
ShadowFilter, 80
SmallerNodeIndexFilter, 80
URI, 108, 172
URL, 108
WDAdornment, 80, 104, 111, 112, 114,

171
WDBinding, 80, 103, 115–118, 120–

123, 126, 127
WDBindingAreaMechanism, 80, 134
WDBindingClipCalculator, 80, 119, 143,

144
WDBindingCover, 80, 106, 124
WDBindingLineMechanism, 80, 135
WDBindingMechanism, 80, 122, 129–

135, 143, 171
WDBindingPointMechanism, 80, 135
WDBook, 80, 89, 123
WDBookMechanism, 80, 124, 135, 136
WDBoundsHandle, 80, 149, 150, 159
WDBox, 80, 172
WDCanvas, 80, 84, 150–153
WDClusterRecognizer, 80, 101, 146–

148, 167
WDDesk, 80, 89, 104, 122, 123
WDDeskImitation, 80, 104

252

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 253 — #255 i
i

i
i

i
i

Index

WDDeskInputEventHandler, 80, 161,
162

WDDeskMechanism, 80, 123, 134, 136
WDDocTurner, 80, 149
WDDocument, 80, 88, 95, 99, 100,

102–105, 107, 113, 115, 122, 127,
128, 132, 133, 141, 143, 171

WDFilter, 80, 166
WDImage, 80, 106–108
WDIndexComparator, 80, 107, 167,

168, 170
WDLayer, 80, 84, 88, 92, 93, 103
WDLowLevelDoc, 80, 88, 105–107, 111,

113, 114, 125, 149, 150, 156,
159, 219

WDLowLevelDocBorder, 80, 105–107,
111

WDMainMenu, 80, 99, 153, 154, 163
WDNodeDragger, 80, 88, 90, 100, 102,

117, 132, 134, 140–144, 162, 166
WDNodeFactory, 80, 88, 89, 91, 110,

149
WDNodeIndexPusher, 80, 101, 144–

147, 156, 179
WDNodeInputEventHandler, 80, 92, 99,

114, 127, 128, 136–141, 143, 145,
146, 156–159, 173

WDNodeRotator, 80, 88, 136–140, 156,
173

WDObjectStore, 80, 84, 87, 169, 171,
172

WDPage, 80, 125–127
WDPageMechanism, 80, 126, 134, 136
WDPrimitiveBinding, 80, 115, 127, 128
WDRotationPoint, 80, 172, 173
WDRubberBand, 80, 98, 161, 162, 164–

166
WDShadow, 80, 105, 112–114
WDShadowSurrounding, 80, 112, 114,

115
WDShape, 80, 106
WDSheet, 80, 123–126
WDSheetMechanism, 80, 125, 135,

136
WDStyledText, 80, 106, 110, 111
WDTempNodeStorage, 80, 101, 146,

168–171

WDTempStorage, 170
WDText, 80, 89, 106–111
WDTextLoader, 80, 108, 110, 172
WDTextSaver, 80, 172
WDUnitConverter, 80, 92, 104, 117,

127, 134, 149, 173
WDZoomEventHandler, 80, 160
WildDocs, 80–82, 84–104, 106–108,

110, 112, 113, 116, 122–124, 127,
141, 149, 151, 154–157, 159, 163–
165

clip alignment, see binding clip
coherence, 26, 51
cohesion, 26, 33, 51
collection object, 66–67
configuration, 82–84, 112

values, 82
consistency, 220
constants, 82
constraints, 35, 48–49, 73
Construct, 219
conversion, automatic, 47
coordinate system, 148
cover, front or back, 41
covering, 36
cultures, 62

desk, 32, 50
desk metaphor, 53, 82, 84, 88–90, 99, 103–

104, 179
size, 66

desktop publishing, 57
destination rectangle, 97–98
Dexter Hypertext Reference Model, 24
DigitalDesk, 50
dirt, 50
dissolution, 46, 117
distortion techniques, 68
division, 41
document

add, 87–88
document vs node, 81
document vs page, 183
fixed size, 82, 179, 197, 198, 200,

209
import file, 88–89
touching, 138, 141

253

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 254 — #256 i
i

i
i

i
i

Index

variable size, 182, 194, 197, 198, 200,
204–205, 209

dog ears, 63
dragging node, 140, 149, 157–158

grid, see grid
DynaWall, 215

EAD, 219
Eclipse, 79
Egypt, classical, 40
elision techniques, 68
emerging metainformation, 33, 35, 48–51
emerging rotation, see rotation
Escritoire, 50, 51
exit, see quit
experiment

agreement, 188, 225
documents

attributes, 183–186
code, 185–186
ID, 183, 186
number of, 183, 185, 194
ordering, 189
sets, 183

finding phase, 190
goals, 175
group designations, 179
hardware, 175
introduction movie, 189
introduction phase, 189
laboratory, 175–177
organization phase, 189–190
participants, 188, 190–191
post-test phase, 190
pre-test phase, 188–189
pre-tests, 186, 188
prior knowledge, 192, 199
problems, 189, 191–193
procedure, 188–190
question, 190
questionnaire, 189, 190, 227, 235
questions, 186–188

groups, 186
ID, 186
number of, 188
same document, 188
skipped or taken out, 191

rating, 190, 208–209
session ID, 190
video material, 177

explorer view, 56
Exposé, 54, 55
extraction of information, 25
eye, see human visual system

F-test, 193–195, 198, 200–202
falsifying, 175
file, 32
finding, 33, 196–200

incorrect answers, 199–200, 209
time, 196–198, 201–202, 206, 209

fisheye view, 56, 68
multiple, 69

focus–context, 68–71
form, 34
fovea, 68
friction, see physical forces
full screen, 84, 89, 91–92, 155

gIBIS, 56
GIF, 88, 108, 149, 154
glue, 136
glyph, 26, 213
Grüne Zitadelle, 61, 62
gravity, see physical forces
Grice’s conversational maxims, 26
Grice, Herbert Paul, 26
grid, 60, 82, 92–94, 157–158
grouping, 41
grouping aid, 44

hierarchically clustered documents, 70
history support, 220
HTML, 50, 65, 88, 106, 110, 149, 154
HTML view, 56
human visual system, 68
Hundertwasser, Friedensreich, 61, 62
hyperbolic tree, 68
HyperCard, 24
hypermedia, see hypertext
hypertext, 24–25
Hypertext Conference, see ACM Hyper-

text Conference
hypertext fiction, 25

254

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 255 — #257 i
i

i
i

i
i

Index

Hyperties, 24

image browsing, 70
image distortion, 182
incidental rotation, see rotation
index pusher, 84, 144–147

limits, 144–145, 147
inertia, see physical forces
information retrieval, 222
informativity, 26
input device, 217–219
Intermedia, 24
interoperability, 25, 56
intertextuality, 26
Intuos3 Art Marker, 218
ISO paper size, 38–39, 104
ISO 216, see ISO paper size

Java, 56, 79, 104, 108, 129, 148–150, 152,
153, 165, 167, 169, 170, 172,
175, 180

JPEG, 88, 108, 149, 154
Judaism, 40

keyboards, 179
Kruskal-Wallis, 199, 208

layer, 79
Levene’s test, 193–195, 197, 198, 200, 202
Lichtenberg, Georg Christoph, 38
limitations, see constraints
linear regression, 206, 207
Linux, 140, 153, 180
load, 172
locking, 220
log file, 91, 179, 201, 235–236
Lombardi, Mark, 25
Looking Glass, 217

Mac OS X, 54–57, 79, 82, 89, 153, 154,
180, 214, 216

command key, 153
Malone, Thomas W., 32–33
Manufaktur, 56
map view, 56, 65
Memex, 24
Memory Extender, see Memex
menu, 153–156

problems, 156
menu items

“Add nodes below cursor to selected
nodes”, 155

“Bindings”, 89, 127, 154, 155
“Book”, 155
“Delete ALL documents”, 103, 155
“Delete document”, 155
“Document”, 84, 155, 156
“File”, 154, 156
“Import Documents. . . ”, 88, 154, 172
“License”, 154
“Load WildDocs (wildddocs.data)”, 154
“Mode”, 154–156
“Move selected nodes”, 155
“New WD | v0 [c]”, 155
“New WD | v1 [c]”, 155
“New WD | v2 [vs]”, 155
“New WD | v3 [z]”, 155
“New WD | v4 [fs]”, 155
“Primitive Binding”, 127, 155
“Push left”, 154, 155
“Push right”, 154, 155
“Reset to 100%”, 155
“Save Statistics automatically”, 90, 156
“Save Statistics in File Only”, 91, 155
“Save WildDocs (wilddocs.data)”, 154
“Sheet”, 155
“Show Statistics”, 90, 155
“Straighten stack”, 154, 155
“Toggle Fullscreen Mode”, 84, 91, 154,

155
“Toggle Quickzoom”, 94, 154, 155
“Window”, 84, 155, 156
“Wipe away selection”, 155
“Zoom in (125% size)”, 155
“Zoom out (80% size)”, 155
“Zoom”, 155, 156

MIME type, 110
mouse cursor position, 98
mouse speed, 140
mouse wheel, 68, 70
move node, 99–101
multi-layered structure, 25–26
multi-structure interfaces, 25
multiple windows, 68
musical structures, 25

255

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 256 — #258 i
i

i
i

i
i

Index

Myst, 221
Myst III: Exile, 221
Myst V: End of Ages, 221

Nakakoji view, 56
Nakakoji, Kumiyo, 56
narrative structure (Lombardi), 25
narrative structures, see hypertext fiction
navigation, 103, 180
node–link, 24
note taking, 34
NoteCards, 24, 56

object store, 87, 171–172
Objective-C, 214, 216
offset, 88, 100, 102, 139, 141

maximum, 141
OmniGraffle, 57, 59–66, 68–70, 112, 213,

214
ontologies, 25
Open The Book, 49, 50
OpenGL, 214
organizing, 193–196

area, 194–196, 206, 209
time, 193–194, 201, 206, 209

outline view, 56

P2P, 219
packages

comparators, 80, 81, 167
de.atzenbeck.wilddocs, 80, 81, 149
documents, 80, 81, 104
documents.adornments, 80, 104, 111
documents.bindings, 80, 115, 116
documents.bindings.mechanisms, 80,

115, 129
documents.lowLevel, 80, 105
filters, 80, 81, 166
java.awt, 108
java.awt.event, 150
java.awt.geom, 129
java.util, 170
javax.swing.text, 110
machines, 79–81, 136
storages, 80, 81, 169, 171
util, 80, 81, 149, 161, 172

panning background, 84, 149, 161, 162

paper size
ANSI, see ANSI paper size
DIN, see ISO paper size
ISO, see ISO paper size
non-standard, 39

paper workflow, 34
PDF, 50
pen, 38
Pentium, 175
personal work files, 34
Perturbed Desktop, 216, 217
physical forces, 34, 63–64
physical hypermedia, 25, 56
Piccolo, 79–81, 91, 92, 94, 99, 103–105,

108, 110–112, 114, 115, 127, 129,
144, 145, 147, 149–151, 156, 160,
161, 165–167, 172, 173, 214

pile, 32, 34
browse, 33

piping, 110, 125
plain text, 88, 149, 154
PNG, 88, 108, 149, 154
Popper, Karl, 175
PowerBook, 175, 217
preferences, see configuration
presentation application, 70
printer, 38, 60
purposeful rotation, see rotation
push node, see move node

Quartz, 214
quit, 86

rapid zooming techniques, 68
Raskin, Jeff, 217
reminding, 33
resizing, see size
restructuring, 35
RFID, 56
Roomware, 215
rotation, 52–53, 59, 75, 102, 194, 209, 214

alternative, 140
animation, 139
center for rotation angle, 139
center mark, 137, 138, 173
incidental, 82, 88, 138–140, 158, 159,

180, 196, 198, 200, 202

256

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 257 — #259 i
i

i
i

i
i

Index

position dependent, 139
problems, 82, 140, 180
purposeful, 82, 137–138, 152, 156–

158, 180, 204
snap to angles, 137

RTF, 88, 106, 110, 149, 154
rubber band, 84, 98, 161–166

keyboard interaction, 163–166
mouse interaction, 161–163
status, 161–163

save, 172
scale, 25
scene graph, 79
Schloss Schönbrunn, 61, 62
scrollbars, 61, 64, 66, 92, 180
seating position, 139
selection

rectangle, see rubber band
rubber band, see rubber band

Semantic Web, 222
shadow, 84
shape, 64
Shapiro-Wilk, 193–195, 197–200, 202, 205,

208
shift key, 161–163
shortcuts, 179

CTRL--, 181, 204, 228
CTRL-0, 181, 204, 228
CTRL-=, 181, 204, 228
CTRL-A, 163, 179, 180, 228, 229
CTRL-Backspace, 103, 155, 156
CTRL-B, 127
CTRL-D, 84, 99, 159, 179, 228
CTRL-F, 91
CTRL-L, 84, 99, 156, 179, 182, 228
CTRL-M, 163, 165, 179, 180, 228,

229
CTRL-O, 89, 153
CTRL-R, 84, 99, 156, 179, 182, 228
CTRL-S, 82, 101, 114, 115, 156, 180,

182, 228
CTRL-U, 84, 99, 159, 179, 228
CTRL-W, 163, 164, 180, 228
CTRL-Z, 94, 182, 229

situationality, 26
size, 64–66

sloppiness, 59–62
slot types, 46
Smalltalk, 216
spatial hypertext, 24, 55

history, 56–57
spatial parser, 57
spatial scale, see scale
spatial structure shader, 57
Squeak, 216
stapler, 38
statistics support, 85–86, 90–91, 155
straighten stack, 101–102
structural computing, 25, 219–220
structural scale, see scale
structure

conversion, automatic, see conversion,
automatic

dissolution, see dissolution
interoperability, see interoperability
level, 25, 194

pushing, 47–48
sub-space, see collection object
Sudden Motion Sensor, 216

t-test, 193–198, 200–202
taxonomic hypertext, 24
temporary scale, see scale
textuality criteria, 26
thickness, 45–46
time, 33, 35, 37
Tinderbox, 56, 57, 59–70, 209, 213, 214
Topos, 56
touch factor, 139
touchscreen, 217
tree map view, 56
Tregaskis, Wade, 216

U. S. Federal Government, 39
U. S. industry, 39
unit conversion, 141
United Nations, 38, 230
urgent tasks, 36, 37

VIKI, 56, 69
visual field, 68
Visual Knowledge Builder, see VKB
VKB, 56, 57, 59–61, 63–69, 209, 213, 214

257

i
i

“phd-thesis” — 2006/7/4 — 10:58 — page 258 — #260 i
i

i
i

i
i

Index

VNC, 50, 175, 177

Wild Windows, 216
WildDocs

designations, 179
versions, 85, 155, 177–183
window, 155

window
fold, 53
overlapping, 52
peeling back, 53

Windows, 140, 153, 175, 180
WWW, 24

zoom events, 160–161
zooming, 55, 68–71, 194, 197, 198, 200–

204, 209, 214
destination rectangle, see destination

rectangle
menu zoom, 82, 94, 180, 181, 201–

204, 206, 207, 209
quickzoom, 74, 82, 94–98, 160, 182,

203–205, 221
smooth zooming, 74, 82, 160, 181,

203–204, 206

258

	Cover
	Contents
	Abstract (English)
	Resumé (Dansk)
	Theory
	Introduction
	Physical and Digital Documents
	Structures
	General
	Levels and Multi-Layers
	Importance of (Structure) Details

	Use Case Scenarios
	Summary and Agenda

	Analysis
	Overview
	Structures Built with Real Documents
	Related Research
	Our Observations
	Structure Descriptions
	Constraints and Emerging Metainformation

	Applications Based on Paper Metaphors
	Paper Simulation
	Spatial Hypertext Applications with Respect to the Real World

	Hypotheses
	Remarks
	Hypotheses Phrasing
	Variable Document Sizes (v1)
	Extended Zooming (v2)
	Rotation (v3)

	Implementation and Evaluation
	Application Design and Implementation
	General
	Overview
	Main Class
	Layer
	Desk Imitation

	Documents
	General
	Low Level Documents
	Bindings

	Machines
	Rotation
	Node Dragging
	Calculating Binding Clip Positions
	Index Pushing
	Cluster Recognition
	Unit Conversion
	Node Factory
	Turning Documents (Obsolete)

	Interaction
	Bounds Handle
	Change Active Node on Mouse Over
	Input Event Handlers

	Miscellaneous
	Filters
	Index Comparison
	Storage
	File Access
	Boxes and Rotation Point (Obsolete)

	Experimental Design and Evaluation
	Goals
	Method
	Test Laboratory
	Test Applications
	Documents and Questions Sets
	Design
	Procedure
	Participants

	Statistical Results
	Remarks on Skipped or Taken Out Questions
	Organizing Documents in WildDocs
	Finding Documents in WildDocs
	Use of WildDocs Specific Features
	Relations
	Participants' Ratings

	Summary and Conclusion on Statistical Results

	Summary, Future Work, and Conclusion
	Summary
	Statistical Evaluation
	Real World Observations
	Application Analysis

	Future Work
	Open Questions
	Improving WildDocs
	Extending WildDocs
	Input Device
	Integration in Structural Computing Environments
	Summary

	Conclusion

	Appendix
	Pre-Work and Introduction
	Participant Agreement
	Pre-Test Questionnaire
	Introduction Movie Manuscript
	Foreign Language Sample Documents

	Post-Work and Analysis
	Post-Test Questionnaire
	Log Files

	Acknowledgements

	Bibliography
	Index

